Difference between revisions of "2000 AMC 12 Problems/Problem 1"

m
(See Also)
Line 9: Line 9:
  
 
==See Also==
 
==See Also==
* [[2000 AMC 12]]
+
{{AMC12 box|year=2000|before=First Question|num-a=2}}
* [[2000 AMC 12 Problems/Problem 2 | Next problem]]
 
  
 
[[Category:Introductory Algebra Problems]]
 
[[Category:Introductory Algebra Problems]]

Revision as of 13:24, 17 October 2007

Problem

In the year $2001$, the United States will host the International Mathematical Olympiad. Let $\displaystyle I,M,$ and $\displaystyle O$ be distinct positive integers such that the product $I \cdot M \cdot O = 2001$. What is the largest possible value of the sum $\displaystyle I + M + O$?

$\mathrm{(A) \ 23 } \qquad \mathrm{(B) \ 55 } \qquad \mathrm{(C) \ 99 } \qquad \mathrm{(D) \ 111 } \qquad \mathrm{(E) \ 671 }$

Solution

The sum is the highest if two factors are the lowest! So, $1 \cdot 3 \cdot 667 = 2001$ and $1+3+667=671 \Longrightarrow \mathrm{(E)}$.

See Also

2000 AMC 12 (ProblemsAnswer KeyResources)
Preceded by
First Question
Followed by
Problem 2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions