Difference between revisions of "2022 AMC 10B Problems/Problem 15"

(Solution)
(Solution)
Line 5: Line 5:
 
<math>\textbf{(A) } 340 \qquad \textbf{(B) } 360 \qquad \textbf{(C) } 380 \qquad \textbf{(D) } 400 \qquad \textbf{(E) } 420</math>
 
<math>\textbf{(A) } 340 \qquad \textbf{(B) } 360 \qquad \textbf{(C) } 380 \qquad \textbf{(D) } 400 \qquad \textbf{(E) } 420</math>
  
==Solution==
+
==Solution 1==
  
 
Suppose that the first number of the arithmetic sequence is <math>a</math>. We will try to compute the value of <math>S_{n}</math>. First, note that the sum of an arithmetic sequence is equal to the number of terms multiplied by the median of the sequence. The median of this sequence is equal to <math>a + n - 1</math>. Thus, the value of <math>S_{n}</math> is <math>n(a + n - 1) = n^2 + n(a - 1)</math>. Then, <cmath>\frac{S_{3n}}{S_{n}} = \frac{9n^2 + 3n(a - 1)}{n^2 + n(a - 1)} = 9 - \frac{6n(a-1)}{n^2 + n(a-1)}.</cmath> Of course, for this value to be constant, <math>6n(a-1)</math> must be <math>0</math> for all values of <math>n</math>, and thus <math>a = 1</math>. Finally, the value of <math>S_{20}</math> is <math>20^2 = \fbox{D. 400}</math>
 
Suppose that the first number of the arithmetic sequence is <math>a</math>. We will try to compute the value of <math>S_{n}</math>. First, note that the sum of an arithmetic sequence is equal to the number of terms multiplied by the median of the sequence. The median of this sequence is equal to <math>a + n - 1</math>. Thus, the value of <math>S_{n}</math> is <math>n(a + n - 1) = n^2 + n(a - 1)</math>. Then, <cmath>\frac{S_{3n}}{S_{n}} = \frac{9n^2 + 3n(a - 1)}{n^2 + n(a - 1)} = 9 - \frac{6n(a-1)}{n^2 + n(a-1)}.</cmath> Of course, for this value to be constant, <math>6n(a-1)</math> must be <math>0</math> for all values of <math>n</math>, and thus <math>a = 1</math>. Finally, the value of <math>S_{20}</math> is <math>20^2 = \fbox{D. 400}</math>
  
 
~mathboy100
 
~mathboy100
 +
 +
==Solution 2 (Quick Insight)==
 +
 +
Recall that the sum of the first <math>n</math> odd numbers is <math>n^2</math>. <math>\frac{S_{3n}}{S_{n}} = \frac{9n^2}{n^2} = 9</math>. Thus <math>S_n = 20^2 = \fbox{D. 400}</math>
 +
 +
~numerophile
 +
 
== See Also ==
 
== See Also ==
 
{{AMC10 box|year=2022|ab=B|num-b=14|num-a=16}}
 
{{AMC10 box|year=2022|ab=B|num-b=14|num-a=16}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 15:40, 18 November 2022

Problem

Let $S_n$ be the sum of the first $n$ term of an arithmetic sequence that has a common difference of $2$. The quotient $\frac{S_{3n}}{S_n}$ does not depend on $n$. What is $S_{20}$?

$\textbf{(A) } 340 \qquad \textbf{(B) } 360 \qquad \textbf{(C) } 380 \qquad \textbf{(D) } 400 \qquad \textbf{(E) } 420$

Solution 1

Suppose that the first number of the arithmetic sequence is $a$. We will try to compute the value of $S_{n}$. First, note that the sum of an arithmetic sequence is equal to the number of terms multiplied by the median of the sequence. The median of this sequence is equal to $a + n - 1$. Thus, the value of $S_{n}$ is $n(a + n - 1) = n^2 + n(a - 1)$. Then, \[\frac{S_{3n}}{S_{n}} = \frac{9n^2 + 3n(a - 1)}{n^2 + n(a - 1)} = 9 - \frac{6n(a-1)}{n^2 + n(a-1)}.\] Of course, for this value to be constant, $6n(a-1)$ must be $0$ for all values of $n$, and thus $a = 1$. Finally, the value of $S_{20}$ is $20^2 = \fbox{D. 400}$

~mathboy100

Solution 2 (Quick Insight)

Recall that the sum of the first $n$ odd numbers is $n^2$. $\frac{S_{3n}}{S_{n}} = \frac{9n^2}{n^2} = 9$. Thus $S_n = 20^2 = \fbox{D. 400}$

~numerophile

See Also

2022 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 14
Followed by
Problem 16
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png