Difference between revisions of "2022 AMC 12B Problems/Problem 15"
Line 19: | Line 19: | ||
Next, we examine option B. We see that <math>2^{606}</math> has a units of digits of <math>4</math> (Taking the units digit of the first few powers of two gives a pattern of <math>2, 4, 8, 6, 2, 4, 8, 6, 2, 4, 8, 6,\cdots</math>). Adding <math>1</math> to <math>4</math>, we get <math>5</math>. Since <math>2^{606}+1</math> has a units digit of <math>5</math>, it is divisible by <math>5</math>. | Next, we examine option B. We see that <math>2^{606}</math> has a units of digits of <math>4</math> (Taking the units digit of the first few powers of two gives a pattern of <math>2, 4, 8, 6, 2, 4, 8, 6, 2, 4, 8, 6,\cdots</math>). Adding <math>1</math> to <math>4</math>, we get <math>5</math>. Since <math>2^{606}+1</math> has a units digit of <math>5</math>, it is divisible by <math>5</math>. | ||
− | Lastly, we examine | + | Lastly, we examine option A. Using the difference of cubes factorization <math>a^3-b^3=(a-b)(a^2+ab+b^2)</math>, we have <math>2^{606}-1^3=(2^{202}-1)(2^{404}+2^{202}+1)</math>. Since <math>2^{404}+2^{202}+1\equiv0\text{mod}3</math> (Every term in the sequence is equivalent to <math>1\text{mod}3</math>), <math>2^{606-1}</math> is divisible by <math>3</math>. |
− | Since we have eliminated every option except | + | Since we have eliminated every option except C, <math>\boxed{\text{(C)}2^{607}-1}</math> is not divisible by any prime less than <math>10</math>. |
Revision as of 01:16, 18 November 2022
Problem: One of the following numbers is not divisible by any prime number less than 10. Which is it?
Solution 1 (Process of Elimination)
We examine option E first. has a units digit of (Taking the units digit of the first few powers of two gives a pattern of ) and has a units digit of (Taking the units digit of the first few powers of three gives a pattern of ). Adding and together, we get , which is a multiple of , meaning that is divisible by 5.
Next, we examine option D. We take the first few powers of added with :
We see that the odd powers of added with 1 are multiples of three. If we continue this pattern, will be divisible by . (The reason why this pattern works: When you multiply by , you obtain . Multiplying by again, we get . We see that in every cycle of two powers of , it goes from to and back to .)
Next, we examine option B. We see that has a units of digits of (Taking the units digit of the first few powers of two gives a pattern of ). Adding to , we get . Since has a units digit of , it is divisible by .
Lastly, we examine option A. Using the difference of cubes factorization , we have . Since (Every term in the sequence is equivalent to ), is divisible by .
Since we have eliminated every option except C, is not divisible by any prime less than .