Difference between revisions of "2022 AMC 10B Problems/Problem 5"
(→Solution) |
(→Solution) |
||
Line 15: | Line 15: | ||
~MRENTHUSIASM | ~MRENTHUSIASM | ||
− | <math>\frac{(1+\frac{1}{3})(1+\frac{1}{5})(1+\frac{1}{7})}{sqrt}</math> | + | |
+ | |||
+ | <math>\frac{(1+\frac{1}{3})(1+\frac{1}{5})(1+\frac{1}{7})}{\sqrt{(1-\frac{1}{3^2})(1-\frac{1}{5^2})(1-\frac{1}{7^2})}} | ||
+ | =\frac{\frac{4}{3}\cdot\frac{6}{5}\cdot\frac{8}{7}}{\sqrt{\frac{8}{9}\cdot\frac{24}{25}\cdot\frac{48}{49}}} | ||
+ | =\frac{\frac{4\cdot6\cdot8}{3\cdot5\cdot7}}{\sqrt{\frac{(2^3)(2^3\cdot3^1)(2^4\cdot3^1)}{(3^2)(5^2)(7^2)}}} | ||
+ | =\frac{\frac{64}{35}}{\frac{96}{105}}=\frac{64}{35}\cdot\frac{105}{96}=2</math> | ||
+ | |||
+ | ~not_slay | ||
== See Also == | == See Also == |
Revision as of 20:33, 17 November 2022
Problem
What is the value of
Solution
We apply the difference of squares to the denominator, and then regroup factors: ~MRENTHUSIASM
~not_slay
See Also
2022 AMC 10B (Problems • Answer Key • Resources) | ||
Preceded by Problem 4 |
Followed by Problem 6 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
2022 AMC 12B (Problems • Answer Key • Resources) | |
Preceded by Problem 4 |
Followed by Problem 6 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.