Difference between revisions of "2022 AMC 10B Problems"
MRENTHUSIASM (talk | contribs) |
MRENTHUSIASM (talk | contribs) (→Problem 1) |
||
Line 2: | Line 2: | ||
==Problem 1 == | ==Problem 1 == | ||
− | Define <math>x\diamondsuit y</math> to be <math>|x-y|</math> for all real numbers <math>x</math> and <math>y.</math> What is the value of < | + | Define <math>x\diamondsuit y</math> to be <math>|x-y|</math> for all real numbers <math>x</math> and <math>y.</math> What is the value of <cmath>(1\diamondsuit(2\diamondsuit3))-((1\diamondsuit2)\diamondsuit3)?</cmath> |
− | < | + | <math>\textbf{(A)}\ {-}2 \qquad\textbf{(B)}\ {-}1 \qquad\textbf{(C)}\ 0 \qquad\textbf{(D)}\ 1 \qquad\textbf{(E)}\ 2</math> |
[[2022 AMC 10B Problems/Problem 1|Solution]] | [[2022 AMC 10B Problems/Problem 1|Solution]] | ||
Line 10: | Line 10: | ||
XXX | XXX | ||
− | < | + | <math>\textbf{(A)}\ X \qquad\textbf{(B)}\ X \qquad\textbf{(C)}\ X \qquad\textbf{(D)}\ X \qquad\textbf{(E)}\ X</math> |
[[2022 AMC 10B Problems/Problem 2|Solution]] | [[2022 AMC 10B Problems/Problem 2|Solution]] | ||
Line 16: | Line 16: | ||
How many three-digit positive integers have an odd number of even digits? | How many three-digit positive integers have an odd number of even digits? | ||
− | < | + | <math>\textbf{(A) }150\qquad\textbf{(B) }250\qquad\textbf{(C) }350\qquad\textbf{(D) }450\qquad\textbf{(E) }550</math> |
[[2022 AMC 10B Problems/Problem 3|Solution]] | [[2022 AMC 10B Problems/Problem 3|Solution]] | ||
==Problem 4 == | ==Problem 4 == | ||
− | A donkey suffers an attack of hiccups and the first hiccup happens at < | + | A donkey suffers an attack of hiccups and the first hiccup happens at <math>\text{4:00}</math> one afternoon. Suppose that |
− | the donkey hiccups regularly every < | + | the donkey hiccups regularly every <math>5</math> seconds. At what time does the donkey’s <math>\text{700th}</math> hiccup occur? |
− | < | + | <math>\textbf{(A) }</math> <math>15</math> seconds after <math>\text{4:58}</math> |
− | < | + | <math>\textbf{(B) }</math> <math>20</math> seconds after <math>\text{4:58}</math> |
− | < | + | <math>\textbf{(C)}</math> <math>25</math> seconds after <math>\text{4:58}</math> |
− | < | + | <math>\textbf{(D) }</math> <math>30</math> seconds after <math>\text{4:58}</math> |
− | < | + | <math>\textbf{(E) }</math> <math>35</math> seconds after <math>\text{4:58}</math> |
[[2022 AMC 10B Problems/Problem 4|Solution]] | [[2022 AMC 10B Problems/Problem 4|Solution]] | ||
Line 39: | Line 39: | ||
XXX | XXX | ||
− | < | + | <math>\textbf{(A)}\ X \qquad\textbf{(B)}\ X \qquad\textbf{(C)}\ X \qquad\textbf{(D)}\ X \qquad\textbf{(E)}\ X</math> |
[[2022 AMC 10B Problems/Problem 5|Solution]] | [[2022 AMC 10B Problems/Problem 5|Solution]] | ||
==Problem 6 == | ==Problem 6 == | ||
− | How many of the first ten numbers of the sequence < | + | How many of the first ten numbers of the sequence <math>121, 11211, 1112111, \cdots</math> are prime numbers? |
− | < | + | <math>\textbf{(A) } 0 \qquad \textbf{(B) }1 \qquad \textbf{(C) }2 \qquad \textbf{(D) }3 \qquad \textbf{(E) }4</math> |
[[2022 AMC 10B Problems/Problem 6|Solution]] | [[2022 AMC 10B Problems/Problem 6|Solution]] | ||
Line 53: | Line 53: | ||
XXX | XXX | ||
− | < | + | <math>\textbf{(A)}\ X \qquad\textbf{(B)}\ X \qquad\textbf{(C)}\ X \qquad\textbf{(D)}\ X \qquad\textbf{(E)}\ X</math> |
[[2022 AMC 10B Problems/Problem 7|Solution]] | [[2022 AMC 10B Problems/Problem 7|Solution]] | ||
==Problem 8 == | ==Problem 8 == | ||
− | Consider the following < | + | Consider the following <math>100</math> sets of <math>10</math> elements each: |
<cmath>\begin{align*} | <cmath>\begin{align*} | ||
&\{1,2,3,\cdots,10\}, \\ | &\{1,2,3,\cdots,10\}, \\ | ||
Line 67: | Line 67: | ||
\end{align*}</cmath> | \end{align*}</cmath> | ||
− | How many of these sets contain exactly two multiples of < | + | How many of these sets contain exactly two multiples of <math>7</math>? |
− | < | + | <math>\textbf{(A)} 40\qquad\textbf{(B)} 42\qquad\textbf{(C)} 42\qquad\textbf{(D)} 49\qquad\textbf{(E)} 50</math> |
[[2022 AMC 10B Problems/Problem 8|Solution]] | [[2022 AMC 10B Problems/Problem 8|Solution]] | ||
Line 75: | Line 75: | ||
==Problem 9 == | ==Problem 9 == | ||
The sum | The sum | ||
− | <cmath>\frac{1}{2!}+\frac{2}{3!}+\frac{3}{4!}+\dots+\frac{2021}{2022!}</cmath>can be expressed as < | + | <cmath>\frac{1}{2!}+\frac{2}{3!}+\frac{3}{4!}+\dots+\frac{2021}{2022!}</cmath>can be expressed as <math>a-\frac{1}{b!}</math>, where <math>a</math> and <math>b</math> are positive integers. What is <math>a+b</math>? |
− | < | + | <math> \textbf{(A)}\ 2020 \qquad\textbf{(B)}\ 2021 \qquad\textbf{(C)}\ 2022 \qquad\textbf{(D)}\ 2023 \qquad\textbf{(E)}\ 2024</math> |
[[2022 AMC 10B Problems/Problem 9|Solution]] | [[2022 AMC 10B Problems/Problem 9|Solution]] | ||
Line 84: | Line 84: | ||
XXX | XXX | ||
− | < | + | <math>\textbf{(A)}\ X \qquad\textbf{(B)}\ X \qquad\textbf{(C)}\ X \qquad\textbf{(D)}\ X \qquad\textbf{(E)}\ X</math> |
[[2022 AMC 10B Problems/Problem 10|Solution]] | [[2022 AMC 10B Problems/Problem 10|Solution]] | ||
Line 91: | Line 91: | ||
XXX | XXX | ||
− | < | + | <math>\textbf{(A)}\ X \qquad\textbf{(B)}\ X \qquad\textbf{(C)}\ X \qquad\textbf{(D)}\ X \qquad\textbf{(E)}\ X</math> |
[[2022 AMC 10B Problems/Problem 11|Solution]] | [[2022 AMC 10B Problems/Problem 11|Solution]] | ||
==Problem 12 == | ==Problem 12 == | ||
− | A pair of fair < | + | A pair of fair <math>6</math>-sided dice is rolled <math>n</math> times. What is the least value of <math>n</math> such that the probability that the sum of the numbers face up on a roll equals <math>7</math> at least once is greater than <math>\frac{1}{2}</math>? |
− | < | + | <math>\textbf{(A) } 2 \qquad \textbf{(B) } 3 \qquad \textbf{(C) } 4 \qquad \textbf{(D) } 5 \qquad \textbf{(E) } 6</math> |
[[2022 AMC 10B Problems/Problem 12|Solution]] | [[2022 AMC 10B Problems/Problem 12|Solution]] | ||
Line 105: | Line 105: | ||
XXX | XXX | ||
− | < | + | <math>\textbf{(A)}\ X \qquad\textbf{(B)}\ X \qquad\textbf{(C)}\ X \qquad\textbf{(D)}\ X \qquad\textbf{(E)}\ X</math> |
[[2022 AMC 10B Problems/Problem 13|Solution]] | [[2022 AMC 10B Problems/Problem 13|Solution]] | ||
Line 112: | Line 112: | ||
XXX | XXX | ||
− | < | + | <math>\textbf{(A)}\ X \qquad\textbf{(B)}\ X \qquad\textbf{(C)}\ X \qquad\textbf{(D)}\ X \qquad\textbf{(E)}\ X</math> |
[[2022 AMC 10B Problems/Problem 14|Solution]] | [[2022 AMC 10B Problems/Problem 14|Solution]] | ||
Line 119: | Line 119: | ||
XXX | XXX | ||
− | < | + | <math>\textbf{(A)}\ X \qquad\textbf{(B)}\ X \qquad\textbf{(C)}\ X \qquad\textbf{(D)}\ X \qquad\textbf{(E)}\ X</math> |
[[2022 AMC 10B Problems/Problem 15|Solution]] | [[2022 AMC 10B Problems/Problem 15|Solution]] | ||
Line 126: | Line 126: | ||
XXX | XXX | ||
− | < | + | <math>\textbf{(A)}\ X \qquad\textbf{(B)}\ X \qquad\textbf{(C)}\ X \qquad\textbf{(D)}\ X \qquad\textbf{(E)}\ X</math> |
[[2022 AMC 10B Problems/Problem 16|Solution]] | [[2022 AMC 10B Problems/Problem 16|Solution]] | ||
Line 133: | Line 133: | ||
XXX | XXX | ||
− | < | + | <math>\textbf{(A)}\ X \qquad\textbf{(B)}\ X \qquad\textbf{(C)}\ X \qquad\textbf{(D)}\ X \qquad\textbf{(E)}\ X</math> |
[[2022 AMC 10B Problems/Problem 17|Solution]] | [[2022 AMC 10B Problems/Problem 17|Solution]] | ||
Line 140: | Line 140: | ||
XXX | XXX | ||
− | < | + | <math>\textbf{(A)}\ X \qquad\textbf{(B)}\ X \qquad\textbf{(C)}\ X \qquad\textbf{(D)}\ X \qquad\textbf{(E)}\ X</math> |
[[2022 AMC 10B Problems/Problem 18|Solution]] | [[2022 AMC 10B Problems/Problem 18|Solution]] | ||
Line 147: | Line 147: | ||
XXX | XXX | ||
− | < | + | <math>\textbf{(A)}\ X \qquad\textbf{(B)}\ X \qquad\textbf{(C)}\ X \qquad\textbf{(D)}\ X \qquad\textbf{(E)}\ X</math> |
[[2022 AMC 10B Problems/Problem 19|Solution]] | [[2022 AMC 10B Problems/Problem 19|Solution]] | ||
==Problem 20 == | ==Problem 20 == | ||
− | Let < | + | Let <math>ABCD</math> be a rhombus with <math>\angle{ADC} = 46^{\circ}</math>. Let <math>E</math> be the midpoint of <math>\overline{CD}</math>, and let <math>F</math> be the point on <math>\overline{BE}</math> such that <math>\overline{AF}</math> is perpendicular to <math>\overline{BE}</math>. What is the degree measure of <math>\angle{BFC}</math>? |
− | < | + | <math>\textbf{(A)}\ 110 \qquad \textbf{(B)}\ 111 \qquad \textbf{(C)}\ 112 \qquad \textbf{(D)}\ 113 \qquad \textbf{(E)}\ 114</math> |
[[2022 AMC 10B Problems/Problem 20|Solution]] | [[2022 AMC 10B Problems/Problem 20|Solution]] | ||
Line 161: | Line 161: | ||
XXX | XXX | ||
− | < | + | <math>\textbf{(A)}\ X \qquad\textbf{(B)}\ X \qquad\textbf{(C)}\ X \qquad\textbf{(D)}\ X \qquad\textbf{(E)}\ X</math> |
[[2022 AMC 10B Problems/Problem 21|Solution]] | [[2022 AMC 10B Problems/Problem 21|Solution]] | ||
==Problem 22 == | ==Problem 22 == | ||
− | Let < | + | Let <math>S</math> be the set of circles in the coordinate plane that are tangent to each of the three circles with equations <math>x^{2}+y^{2}=4</math>, <math>x^{2}+y^{2}=64</math>, and <math>(x-5)^{2}+y^{2}=3</math>. What is the sum of the areas of all circles in <math>S</math>? |
− | < | + | <math>\textbf{(A)}~48\pi\qquad\textbf{(B)}~68\pi\qquad\textbf{(C)}~96\pi\qquad\textbf{(D)}~102\pi\qquad\textbf{(E)}~136\pi\qquad</math> |
[[2022 AMC 10B Problems/Problem 22|Solution]] | [[2022 AMC 10B Problems/Problem 22|Solution]] | ||
==Problem 23 == | ==Problem 23 == | ||
− | Ant Amelia starts on the number line at < | + | Ant Amelia starts on the number line at <math>0</math> and crawls in the following manner. For <math>n=1,2,3,</math> Amelia chooses a time duration <math>t_n</math> and an increment <math>x_n</math> independently and uniformly at random from the interval <math>(0,1).</math> During the <math>n</math>th step of the process, Amelia moves <math>x_n</math> units in the positive direction, using up <math>t_n</math> minutes. If the total elapsed time has exceeded <math>1</math> minute during the <math>n</math>th step, she stops at the end of that step; otherwise, she continues with the next step, taking at most <math>3</math> steps in all. What is the probability that Amelia’s position when she stops will be greater than <math>1</math>? |
− | < | + | <math>\textbf{(A) }\frac{1}{3} \qquad \textbf{(B) }\frac{1}{2} \qquad \textbf{(C) }\frac{2}{3} \qquad \textbf{(D) }\frac{3}{4} \qquad \textbf{(E) }\frac{5}{6}</math> |
[[2022 AMC 10B Problems/Problem 23|Solution]] | [[2022 AMC 10B Problems/Problem 23|Solution]] | ||
Line 182: | Line 182: | ||
XXX | XXX | ||
− | < | + | <math>\textbf{(A)}\ X \qquad\textbf{(B)}\ X \qquad\textbf{(C)}\ X \qquad\textbf{(D)}\ X \qquad\textbf{(E)}\ X</math> |
[[2022 AMC 10B Problems/Problem 24|Solution]] | [[2022 AMC 10B Problems/Problem 24|Solution]] | ||
Line 189: | Line 189: | ||
XXX | XXX | ||
− | < | + | <math>\textbf{(A)}\ X \qquad\textbf{(B)}\ X \qquad\textbf{(C)}\ X \qquad\textbf{(D)}\ X \qquad\textbf{(E)}\ X</math> |
[[2022 AMC 10B Problems/Problem 25|Solution]] | [[2022 AMC 10B Problems/Problem 25|Solution]] |
Revision as of 14:20, 17 November 2022
2022 AMC 10B (Answer Key) Printable versions: • AoPS Resources • PDF | ||
Instructions
| ||
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 |
Contents
- 1 Problem 1
- 2 Problem 2
- 3 Problem 3
- 4 Problem 4
- 5 Problem 5
- 6 Problem 6
- 7 Problem 7
- 8 Problem 8
- 9 Problem 9
- 10 Problem 10
- 11 Problem 11
- 12 Problem 12
- 13 Problem 13
- 14 Problem 14
- 15 Problem 15
- 16 Problem 16
- 17 Problem 17
- 18 Problem 18
- 19 Problem 19
- 20 Problem 20
- 21 Problem 21
- 22 Problem 22
- 23 Problem 23
- 24 Problem 24
- 25 Problem 25
- 26 See also
Problem 1
Define to be for all real numbers and What is the value of
Problem 2
XXX
Problem 3
How many three-digit positive integers have an odd number of even digits?
Problem 4
A donkey suffers an attack of hiccups and the first hiccup happens at one afternoon. Suppose that the donkey hiccups regularly every seconds. At what time does the donkey’s hiccup occur?
seconds after
seconds after
seconds after
seconds after
seconds after
Problem 5
XXX
Problem 6
How many of the first ten numbers of the sequence are prime numbers?
Problem 7
XXX
Problem 8
Consider the following sets of elements each:
How many of these sets contain exactly two multiples of ?
Problem 9
The sum can be expressed as , where and are positive integers. What is ?
Problem 10
XXX
Problem 11
XXX
Problem 12
A pair of fair -sided dice is rolled times. What is the least value of such that the probability that the sum of the numbers face up on a roll equals at least once is greater than ?
Problem 13
XXX
Problem 14
XXX
Problem 15
XXX
Problem 16
XXX
Problem 17
XXX
Problem 18
XXX
Problem 19
XXX
Problem 20
Let be a rhombus with . Let be the midpoint of , and let be the point on such that is perpendicular to . What is the degree measure of ?
Problem 21
XXX
Problem 22
Let be the set of circles in the coordinate plane that are tangent to each of the three circles with equations , , and . What is the sum of the areas of all circles in ?
Problem 23
Ant Amelia starts on the number line at and crawls in the following manner. For Amelia chooses a time duration and an increment independently and uniformly at random from the interval During the th step of the process, Amelia moves units in the positive direction, using up minutes. If the total elapsed time has exceeded minute during the th step, she stops at the end of that step; otherwise, she continues with the next step, taking at most steps in all. What is the probability that Amelia’s position when she stops will be greater than ?
Problem 24
XXX
Problem 25
XXX
See also
2022 AMC 10B (Problems • Answer Key • Resources) | ||
Preceded by 2021 Fall AMC 10B Problems |
Followed by 2023 AMC 10B Problems | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.