Difference between revisions of "2022 AMC 12A Problems/Problem 23"
(→Solution) |
(→Problem) |
||
Line 3: | Line 3: | ||
Let <math>h_n</math> and <math>k_n</math> be the unique relatively prime positive integers such that | Let <math>h_n</math> and <math>k_n</math> be the unique relatively prime positive integers such that | ||
− | + | <cmath> | |
\frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{n} = \frac{h_n}{k_n} . | \frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{n} = \frac{h_n}{k_n} . | ||
− | + | </cmath> | |
Let <math>L_n</math> denote the least common multiple of the numbers <math>1,2,3,\cdots,n</math>. For how many integers <math>n</math> with <math>1 \leq n \leq 22</math> is <math>k_n < L_n</math>? | Let <math>L_n</math> denote the least common multiple of the numbers <math>1,2,3,\cdots,n</math>. For how many integers <math>n</math> with <math>1 \leq n \leq 22</math> is <math>k_n < L_n</math>? |
Revision as of 20:22, 11 November 2022
Problem
Let and be the unique relatively prime positive integers such that
Let denote the least common multiple of the numbers . For how many integers with is ?
Solution
We will use the following lemma to solve this problem.
Denote by the prime factorization of . For any , denote , where and are relatively prime. Then if and only if for any , is not a multiple of .
Now, we use the result above to solve this problem.
Following from this lemma, the list of with and is \[ 6, 7, 8, 18, 19, 20, 21, 22 . \]
Therefore, the answer is .