Difference between revisions of "2019 AMC 10A Problems/Problem 2"

(Solution 4)
(Solution 3)
Line 23: Line 23:
  
 
==Solution 3==
 
==Solution 3==
Because we know that <math>5^3</math> is a factor of <math>15!</math> and <math>20!</math>, the last three digits of both numbers is a 0, this means that the difference of the hundreds digits is also <math>\boxed{\text{(A) }0}</math>.
+
Because we know that <math>5^3</math> is a factor of <math>15!</math> and <math>20!</math>, the last three digits of both numbers is a 0, this means that the difference of the hundreds digits is also <math>\boxed{\textbf{(A) }0}</math>.
 
 
  
 
==Solution 4==
 
==Solution 4==

Revision as of 10:52, 23 October 2022

Problem

What is the hundreds digit of $(20!-15!)?$

$\textbf{(A) }0\qquad\textbf{(B) }1\qquad\textbf{(C) }2\qquad\textbf{(D) }4\qquad\textbf{(E) }5$

Video Solution 1

https://youtu.be/J4Bqztwjyxw

Education, The Study of Everything


Video Solution 2

https://youtu.be/V1fY0oLSHvo

~savannahsolver

== Video Solution == 3 https://youtu.be/zfChnbMGLVQ?t=3899

~ pi_is_3.14

Solution 3

Because we know that $5^3$ is a factor of $15!$ and $20!$, the last three digits of both numbers is a 0, this means that the difference of the hundreds digits is also $\boxed{\textbf{(A) }0}$.

Solution 4

We can clearly see that $20! \equiv 15! \equiv 0 \pmod{100}$, so $20! - 15! \equiv 0 \pmod{100}$ meaning that the last two digits are equal to $00$ and the hundreds digit is $0$, or $\boxed{\textbf{(A)}\ 0}$.

--abhinavg0627

Solution 5 (Brute Force)

$20!= 2432902008176640000$ $15!= 1307674368000$

Then, we see that the hundred digit is $0-0=0$

-dragoon

See Also

2019 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 1
Followed by
Problem 3
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png