Difference between revisions of "Kimberling’s point X(24)"
(→Kimberling's point X(24)) |
|||
Line 6: | Line 6: | ||
<i><b>Theorem 1</b></i> | <i><b>Theorem 1</b></i> | ||
− | Denote <math>T_0</math> obtuse or acute <math>\triangle ABC.</math> Let <math>T_0</math> be the base triangle, <math>T_1 = \triangle DEF</math> be Orthic triangle of <math>T_0, T_2 = \triangle UVW</math> be | + | Denote <math>T_0</math> obtuse or acute <math>\triangle ABC.</math> Let <math>T_0</math> be the base triangle, <math>T_1 = \triangle DEF</math> be Orthic triangle of <math>T_0, T_2 = \triangle UVW</math> be Orthic Triangle of <math>T_1</math>. Let <math>O</math> and <math>H</math> be the circumcenter and orthocenter of <math>T_0.</math> |
Then <math>\triangle T_0</math> and <math>\triangle T_2</math> are homothetic, the point <math>P,</math> center of this homothety lies on Euler line <math>OH</math> of <math>T_0.</math> | Then <math>\triangle T_0</math> and <math>\triangle T_2</math> are homothetic, the point <math>P,</math> center of this homothety lies on Euler line <math>OH</math> of <math>T_0.</math> | ||
Line 15: | Line 15: | ||
WLOG, we use case <math>\angle A = \alpha > 90^\circ.</math> | WLOG, we use case <math>\angle A = \alpha > 90^\circ.</math> | ||
− | |||
− | In accordance with Claim, <math>\angle BVD = \angle HVE \implies B', V,</math> and <math>B</math> are collinear. | + | Let <math>B'</math> be reflection <math>H</math> in <math>DE.</math> In accordance with Claim, <math>\angle BVD = \angle HVE \implies B', V,</math> and <math>B</math> are collinear. |
Similarly, <math>C, W,</math> and <math>C',</math> were <math>C'</math> is reflection <math>H</math> in <math>DF,</math> are collinear. | Similarly, <math>C, W,</math> and <math>C',</math> were <math>C'</math> is reflection <math>H</math> in <math>DF,</math> are collinear. | ||
Line 30: | Line 29: | ||
<math>\triangle HB'C' \sim \triangle OBC, BB', CC'</math> and <math>HO</math> are concurrent at point <math>P.</math> | <math>\triangle HB'C' \sim \triangle OBC, BB', CC'</math> and <math>HO</math> are concurrent at point <math>P.</math> | ||
− | In accordance with Claim, <math>\angle HUF = \angle AUF \implies</math> points <math>H</math> and <math>P</math> are isogonal conjugate with respect <math>\triangle UVW.</math> | + | In accordance with <i><b>Claim,</b></i> <math>\angle HUF = \angle AUF \implies</math> points <math>H</math> and <math>P</math> are isogonal conjugate with respect <math>\triangle UVW.</math> |
− | < | + | <cmath>\angle HDE = \alpha - 90^\circ, \angle HCD = 90^\circ - \beta \implies</cmath> |
− | < | + | <cmath>HB' = 2 HD \sin (\alpha - 90^\circ) = - 2 CD \tan(90^\circ- \beta) \cos \alpha = - 2 AC \cos \gamma \frac {\cos \beta}{\sin \beta} \cos \alpha = - 4 OB \cos A \cos B \cos C.</cmath> |
− | < | + | <cmath>k = \frac {HB'}{OB} = \frac {HP}{OP}= - 4 \cos A \cos B \cos C \implies \frac {\vec {PH}}{\vec {OP}}= 4 \cos A \cos B \cos C.</cmath> |
<i><b>Claim</b></i> | <i><b>Claim</b></i> | ||
Line 52: | Line 51: | ||
Well known that <math>AH</math> is the polar of point <math>Q,</math> so <math>QO \cdot HO = QP^2 \implies QB \cdot QC = (QO – R) \cdot (QO + R) = QP^2</math> <cmath>\implies P \in \Theta, \Omega \perp \omega.</cmath> | Well known that <math>AH</math> is the polar of point <math>Q,</math> so <math>QO \cdot HO = QP^2 \implies QB \cdot QC = (QO – R) \cdot (QO + R) = QP^2</math> <cmath>\implies P \in \Theta, \Omega \perp \omega.</cmath> | ||
− | Let <math>I_{\Omega}</math> be inversion with respect <math>\Omega, I_{\Omega}(B) = C, I_{\Omega}(H) = O.</math> | + | Let <math>I_{\Omega}</math> be inversion with respect <math>\Omega, I_{\Omega}(B) = C, I_{\Omega}(H) = O,I_{\Omega}(D) = D'.</math> |
− | Denote <math> | + | Denote <math>I_{\Omega}(S) = S'.</math> |
<cmath>HS \perp DD' \implies S'O \perp BC \implies BS' = CS' \implies \angle OCS' = \angle OBS'.</cmath> | <cmath>HS \perp DD' \implies S'O \perp BC \implies BS' = CS' \implies \angle OCS' = \angle OBS'.</cmath> |
Revision as of 13:00, 12 October 2022
Kimberling's point X(24)
Kimberling defined point X(24) as perspector of and Orthic Triangle of the Orthic Triangle of .
Theorem 1
Denote obtuse or acute Let be the base triangle, be Orthic triangle of be Orthic Triangle of . Let and be the circumcenter and orthocenter of
Then and are homothetic, the point center of this homothety lies on Euler line of
The ratio of the homothety is
Proof
WLOG, we use case
Let be reflection in In accordance with Claim, and are collinear.
Similarly, and were is reflection in are collinear.
Denote
and are concurrent at point
In accordance with Claim, points and are isogonal conjugate with respect
Claim
Let be an acute triangle, and let and denote its altitudes. Lines and meet at Prove that
Proof
Let be the circle centered at is midpoint
Let meet at Let be the circle centered at with radius
Let be the circle with diameter
Well known that is the polar of point so
Let be inversion with respect
Denote
Theorem 2
Let be the base triangle, be orthic triangle of be Kosnita triangle. Then and are homothetic, the point center of this homothety lies on Euler line of the ratio of the homothety is We recall that vertex of Kosnita triangle are: is the circumcenter of is the circumcenter of is the circumcenter of where is circumcenter of
vladimir.shelomovskii@gmail.com, vvsss