Difference between revisions of "Kimberling’s point X(24)"
(Kimberling’s point X(24)) |
|||
Line 1: | Line 1: | ||
+ | <i><b> Kimberling point X(24) </b></i> | ||
+ | [[File:2016 USAMO 3g.png|450px|right]] | ||
+ | |||
+ | Perspector of Triangle <math>ABC</math> and Orthic Triangle of the Orthic Triangle. | ||
+ | <i><b>Theorem 1</b></i> | ||
+ | Denote <math>T_0</math> obtuse or acute <math>\triangle ABC.</math> Let <math>T_0</math> be the base triangle, <math>T_1 = \triangle DEF</math> be Orthic triangle of <math>T_0, T_2 = \triangle UVW</math> be Orthic Triangle of the Orthic Triangle of <math>T_0</math>. Let <math>O</math> and <math>H</math> be the circumcenter and orthocenter of <math>T_0.</math> | ||
+ | |||
+ | Then <math>\triangle T_0</math> and <math>\triangle T_2</math> are homothetic, the point <math>P,</math> center of this homothety lies on Euler line <math>OH</math> of <math>T_0.</math> | ||
+ | |||
+ | The ratio of the homothety is <math>k = \frac {\vec {PH}}{\vec {OP}}= 4 \cos A \cos B \cos C.</math> | ||
+ | |||
+ | <i><b>Proof</b></i> | ||
+ | |||
+ | WLOG, we use case <math>\angle A = \alpha > 90^\circ.</math> | ||
+ | Let <math>B'</math> be reflection <math>H</math> in <math>DE.</math> | ||
+ | |||
+ | In accordance with Claim, <math>\angle BVD = \angle HVE \implies B', V,</math> and <math>B</math> are collinear. | ||
+ | |||
+ | Similarly, <math>C, W,</math> and <math>C',</math> were <math>C'</math> is reflection <math>H</math> in <math>DF,</math> are collinear. | ||
+ | |||
+ | Denote <math>\angle ABC = \beta = \angle CHD, \angle ACB = \gamma = \angle BHD \implies</math> | ||
+ | |||
+ | <math>\angle HDF = \angle HDE = \angle DHB' = \angle DHC' = 180^\circ - \alpha.</math> | ||
+ | |||
+ | <math>B'C' \perp HD, BC \perp HD \implies BC|| B'C'.</math> | ||
+ | <math>OB = OC, HB' = HC', \angle BOC = \angle B'HC' = 360^\circ - 2 \alpha \implies OB ||HB', OC || HC' \implies</math> | ||
+ | |||
+ | <math>\triangle HB'C' \sim \triangle OBC, BB', CC'</math> and <math>HO</math> are concurrent at point <math>P.</math> | ||
+ | |||
+ | In accordance with Claim, <math>\angle HUF = \angle AUF \implies</math> points <math>H</math> and <math>P</math> are isogonal conjugate with respect <math>\triangle UVW.</math> | ||
+ | |||
+ | <math>\angle HDE = \alpha - 90^\circ, \angle HCD = 90^\circ - \beta \implies</math> | ||
+ | |||
+ | <math>HB' = 2 HD \sin (\alpha - 90^\circ) = - 2 CD \tan(90^\circ- \beta) \cos \alpha = - 2 AC \cos \gamma \frac {\cos \beta}{\sin \beta} \cos \alpha = - 4 OB \cos A \cos B \cos C.</math> | ||
+ | <math>k = \frac {HB'}{OB} = \frac {HP}{OP}= - 4 \cos A \cos B \cos C \implies \frac {\vec {PH}}{\vec {OP}}= 4 \cos A \cos B \cos C.</math> | ||
+ | |||
+ | <i><b>Claim</b></i> | ||
+ | [[File:2016 3 Lemma.png|400px|right]] | ||
+ | Let <math>\triangle ABC</math> be an acute triangle, and let <math>AH, BD',</math> and <math>CD</math> denote its altitudes. Lines <math>DD'</math> and <math>BC</math> meet at <math>Q, HS \perp DD'.</math> Prove that <math>\angle BSH = \angle CSH.</math> | ||
− | + | <i><b>Proof</b></i> | |
− | + | ||
− | + | Let <math>\omega</math> be the circle <math>BCD'D</math> centered at <math>O (O</math> is midpoint <math>BC).</math> | |
+ | |||
+ | Let <math>\omega</math> meet <math>AH</math> at <math>P.</math> | ||
+ | Let <math>\Omega</math> be the circle centered at <math>Q</math> with radius <math>QP.</math> | ||
+ | |||
+ | Let <math>\Theta</math> be the circle with diameter <math>OQ.</math> | ||
+ | |||
+ | We know that <math>OB = OP = OC = R, PH^2 = R^2 – OH^2 \implies</math> | ||
+ | <math>QP^2 + R^2 = (QH+ HO)^2 \implies P \in \Theta, \Omega \perp \omega.</math> | ||
+ | |||
+ | Let <math>I_{\Omega}</math> be inversion with respect <math>\Omega, I_{\Omega}(B) = C.</math> | ||
+ | |||
+ | Denote <math>I_{\Omega}(D) = D', I_{\Omega}(S) = S',</math> | ||
+ | <math>QH \cdot QO = QP^2 \implies I_{\Omega}(H) = O.</math> | ||
+ | <math>HS \perp DD' \implies S'O \perp BC \implies BS' = CS' \implies \angle OCS' = \angle OBS'.</math> | ||
+ | |||
+ | <math>\angle QSB = \angle QCS' = \angle OCS' = \angle OBS' = \angle CSS'.</math> | ||
+ | |||
+ | <math>\angle BSH = 90 ^\circ – \angle QSB = 90 ^\circ – \angle CSS' =\angle CSH.</math> | ||
+ | |||
+ | <i><b>Theorem 2</b></i> | ||
+ | |||
+ | Let <math>T_0 = \triangle ABC</math> be the base triangle, <math>T_1 = \triangle DEF</math> be orthic triangle of <math>T_0, T_2 = \triangle KLM</math> be Kosnita triangle. Then <math>\triangle T_1</math> and <math>\triangle T_2</math> are homothetic, the point <math>P,</math> center of this homothety lies on Euler line of <math>T_0,</math> the ratio of the homothety is <math>k = \frac {\vec PH}{\vec OP} = 4 \cos A \cos B \cos C.</math> | ||
+ | We recall that vertex of Kosnita triangle are: <math>K</math> is the circumcenter of <math>\triangle OBC, L</math> is the circumcenter of <math>\triangle OAB, M</math> is the circumcenter of <math>\triangle OAC,</math> where <math>O</math> is circumcenter of <math>T_0.</math> | ||
+ | |||
+ | '''vladimir.shelomovskii@gmail.com, vvsss''' |
Revision as of 07:50, 12 October 2022
Kimberling point X(24)
Perspector of Triangle and Orthic Triangle of the Orthic Triangle. Theorem 1 Denote obtuse or acute Let be the base triangle, be Orthic triangle of be Orthic Triangle of the Orthic Triangle of . Let and be the circumcenter and orthocenter of
Then and are homothetic, the point center of this homothety lies on Euler line of
The ratio of the homothety is
Proof
WLOG, we use case Let be reflection in
In accordance with Claim, and are collinear.
Similarly, and were is reflection in are collinear.
Denote
and are concurrent at point
In accordance with Claim, points and are isogonal conjugate with respect
Claim
Let be an acute triangle, and let and denote its altitudes. Lines and meet at Prove that
Proof
Let be the circle centered at is midpoint
Let meet at Let be the circle centered at with radius
Let be the circle with diameter
We know that
Let be inversion with respect
Denote
Theorem 2
Let be the base triangle, be orthic triangle of be Kosnita triangle. Then and are homothetic, the point center of this homothety lies on Euler line of the ratio of the homothety is We recall that vertex of Kosnita triangle are: is the circumcenter of is the circumcenter of is the circumcenter of where is circumcenter of
vladimir.shelomovskii@gmail.com, vvsss