Difference between revisions of "2011 AMC 12A Problems/Problem 21"
m (fixed parentheses size) |
m |
||
Line 18: | Line 18: | ||
Repeat this process for <math>f_{3}(x)=\sqrt{1-\sqrt{4-\sqrt{9-x}}}</math> to get a domain of <math>-7\leq x\leq0</math>. | Repeat this process for <math>f_{3}(x)=\sqrt{1-\sqrt{4-\sqrt{9-x}}}</math> to get a domain of <math>-7\leq x\leq0</math>. | ||
− | For <math>f_{4}(x)</math>, since square roots | + | For <math>f_{4}(x)</math>, since square roots must be nonnegative, we can see that the negative values of the previous domain will not work, so <math>\sqrt{16-x}=0</math>. Thus we now arrive at <math>16</math> being the only number in the of domain of <math>f_4 x</math> that defines <math>x</math>. However, since we are looking for the largest value for <math>n</math> for which the domain of <math>f_{n}</math> is nonempty, we must continue checking until we arrive at a domain that is empty. |
+ | |||
+ | We continue with <math>f_{5}(x)</math> to get a domain of <math>\sqrt{25-x}=16 \implies x=-231</math>. Since square roots cannot be negative, this is the last nonempty domain. We add to get <math>5-231=\boxed{\textbf{(A)}\ -226}</math>. | ||
== See also == | == See also == | ||
{{AMC12 box|year=2011|num-b=20|num-a=22|ab=A}} | {{AMC12 box|year=2011|num-b=20|num-a=22|ab=A}} | ||
{{MAA Notice}} | {{MAA Notice}} |
Revision as of 20:20, 5 October 2022
Problem
Let , and for integers , let . If is the largest value of for which the domain of is nonempty, the domain of is . What is ?
Solution
The domain of is defined when .
Applying the domain of and the fact that square roots must be positive, we get . Simplifying, the domain of becomes .
Repeat this process for to get a domain of .
For , since square roots must be nonnegative, we can see that the negative values of the previous domain will not work, so . Thus we now arrive at being the only number in the of domain of that defines . However, since we are looking for the largest value for for which the domain of is nonempty, we must continue checking until we arrive at a domain that is empty.
We continue with to get a domain of . Since square roots cannot be negative, this is the last nonempty domain. We add to get .
See also
2011 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 20 |
Followed by Problem 22 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.