Difference between revisions of "1964 AHSME Problems/Problem 31"
Talkinaway (talk | contribs) |
Sophiemaster (talk | contribs) m (→Solution) |
||
Line 21: | Line 21: | ||
<math>f(n-1) = \dfrac{(5+3\sqrt{5})(1 - \sqrt{5})}{5(1 + \sqrt{5})(1 - \sqrt{5})}\left(\dfrac{1+\sqrt{5}}{2}\right)^n+\dfrac{(5-3\sqrt{5})(1 + \sqrt{5})}{5(1 - \sqrt{5})(1 + \sqrt{5})}\left(\dfrac{1-\sqrt{5}}{2}\right)^n</math> | <math>f(n-1) = \dfrac{(5+3\sqrt{5})(1 - \sqrt{5})}{5(1 + \sqrt{5})(1 - \sqrt{5})}\left(\dfrac{1+\sqrt{5}}{2}\right)^n+\dfrac{(5-3\sqrt{5})(1 + \sqrt{5})}{5(1 - \sqrt{5})(1 + \sqrt{5})}\left(\dfrac{1-\sqrt{5}}{2}\right)^n</math> | ||
− | <math>f(n-1) = \dfrac{-10-2\sqrt{5}}{5(-4)}\left(\dfrac{1+\sqrt{5}}{2}\right)^n+\dfrac{-10 + 2\sqrt{ | + | <math>f(n-1) = \dfrac{-10-2\sqrt{5}}{5(-4)}\left(\dfrac{1+\sqrt{5}}{2}\right)^n+\dfrac{-10 + 2\sqrt{5}}{5(-4)}\left(\dfrac{1-\sqrt{5}}{2}\right)^n</math> |
− | <math>f(n-1) = \dfrac{10+2\sqrt{5}}{20}\left(\dfrac{1+\sqrt{5}}{2}\right)^n+\dfrac{10 - 2\sqrt{ | + | <math>f(n-1) = \dfrac{10+2\sqrt{5}}{20}\left(\dfrac{1+\sqrt{5}}{2}\right)^n+\dfrac{10 - 2\sqrt{5}}{20}\left(\dfrac{1-\sqrt{5}}{2}\right)^n</math> |
Line 35: | Line 35: | ||
Thus, the answer is <math>\boxed{\textbf{(B)}}</math>. | Thus, the answer is <math>\boxed{\textbf{(B)}}</math>. | ||
− | |||
==See Also== | ==See Also== |
Revision as of 19:17, 12 August 2022
Problem
Let
Then , expressed in terms of , equals:
Solution
We compute and , while pulling one copy of the exponential part outside:
Computing gives:
Thus, the answer is .
See Also
1964 AHSC (Problems • Answer Key • Resources) | ||
Preceded by Problem 30 |
Followed by Problem 32 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 • 31 • 32 • 33 • 34 • 35 • 36 • 37 • 38 • 39 • 40 | ||
All AHSME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.