Difference between revisions of "1996 AIME Problems/Problem 10"

(Solution 3 (Only sine and cosine sum formulas))
(Solution 3 (Only sine and cosine sum formulas))
Line 22: Line 22:
 
== Solution 3 (Only sine and cosine sum formulas) ==
 
== Solution 3 (Only sine and cosine sum formulas) ==
 
It seems reasonable to assume that <math>\dfrac{\cos{96^{\circ}}+\sin{96^{\circ}}}{\cos{96^{\circ}}-\sin{96^{\circ}}} = \tan{\theta}</math> for some angle <math>\theta</math>. This means <cmath>\dfrac{\alpha (\cos{96^{\circ}}+\sin{96^{\circ}})}{\alpha (\cos{96^{\circ}}-\sin{96^{\circ}})} = \frac{\sin{\theta}}{\cos{\theta}}</cmath> for some constant <math>\alpha</math>. We can set <math>\alpha (\cos{96^{\circ}}+\sin{96^{\circ}}) = \sin{\theta}</math>.Note that if we have <math>\alpha</math> equal to both the sine and cosine of an angle, we can use the sine sum formula (and the cosine sum formula on the denominator). So, since <math>\sin{45^{\circ}} = \cos{45^{\circ}} = \tfrac{\sqrt{2}}{2}</math>, if <math>\alpha = \tfrac{\sqrt{2}}{2}</math> we have  
 
It seems reasonable to assume that <math>\dfrac{\cos{96^{\circ}}+\sin{96^{\circ}}}{\cos{96^{\circ}}-\sin{96^{\circ}}} = \tan{\theta}</math> for some angle <math>\theta</math>. This means <cmath>\dfrac{\alpha (\cos{96^{\circ}}+\sin{96^{\circ}})}{\alpha (\cos{96^{\circ}}-\sin{96^{\circ}})} = \frac{\sin{\theta}}{\cos{\theta}}</cmath> for some constant <math>\alpha</math>. We can set <math>\alpha (\cos{96^{\circ}}+\sin{96^{\circ}}) = \sin{\theta}</math>.Note that if we have <math>\alpha</math> equal to both the sine and cosine of an angle, we can use the sine sum formula (and the cosine sum formula on the denominator). So, since <math>\sin{45^{\circ}} = \cos{45^{\circ}} = \tfrac{\sqrt{2}}{2}</math>, if <math>\alpha = \tfrac{\sqrt{2}}{2}</math> we have  
<cmath>\alpha (\cos{96^{\circ}}+\sin{96^{\circ}}) = \cos{96^{\circ}} \frac{\sqrt{2}}{2} + \sin{96^{\circ}} \frac{\sqrt{2}}{2} = \cos{96^{\circ}} \sin{45^{\circ}} + \sin{96^{\circ}} \cos{45^{\circ}} = \sin{45^{\circ} + 96^{\circ}} = \sin{141^{\circ}}</cmath>
+
<cmath>\alpha (\cos{96^{\circ}} + \sin{96^{\circ}}) = \cos{96^{\circ}} \frac{\sqrt{2}}{2} + \sin{96^{\circ}} \frac{\sqrt{2}}{2} = \cos{96^{\circ}} \sin{45^{\circ}} + \sin{96^{\circ}} \cos{45^{\circ}} = \sin{45^{\circ} + 96^{\circ}} = \sin{141^{\circ}}</cmath>
 
from the sine sum formula. For the denominator, from the cosine sum formula, we have  
 
from the sine sum formula. For the denominator, from the cosine sum formula, we have  
 
<cmath>\alpha (\cos{96^{\circ}} - \sin{96^{\circ}}) = \cos{96^{\circ}} \frac{\sqrt{2}}{2} + \sin{96^{\circ}} \frac{\sqrt{2}}{2} = \cos{96^{\circ}} \cos{45^{\circ}} + \sin{96^{\circ}} \sin{45^{\circ}} = \cos{96^{\circ}  + 45^{\circ}} = \cos{141^{\circ}}.</cmath>
 
<cmath>\alpha (\cos{96^{\circ}} - \sin{96^{\circ}}) = \cos{96^{\circ}} \frac{\sqrt{2}}{2} + \sin{96^{\circ}} \frac{\sqrt{2}}{2} = \cos{96^{\circ}} \cos{45^{\circ}} + \sin{96^{\circ}} \sin{45^{\circ}} = \cos{96^{\circ}  + 45^{\circ}} = \cos{141^{\circ}}.</cmath>

Revision as of 14:46, 3 August 2022

Problem

Find the smallest positive integer solution to $\tan{19x^{\circ}}=\dfrac{\cos{96^{\circ}}+\sin{96^{\circ}}}{\cos{96^{\circ}}-\sin{96^{\circ}}}$.

Solution

$\dfrac{\cos{96^{\circ}}+\sin{96^{\circ}}}{\cos{96^{\circ}}-\sin{96^{\circ}}} =$ $\dfrac{\sin{186^{\circ}}+\sin{96^{\circ}}}{\sin{186^{\circ}}-\sin{96^{\circ}}} =$ $\dfrac{\sin{(141^{\circ}+45^{\circ})}+\sin{(141^{\circ}-45^{\circ})}}{\sin{(141^{\circ}+45^{\circ})}-\sin{(141^{\circ}-45^{\circ})}} =$ $\dfrac{2\sin{141^{\circ}}\cos{45^{\circ}}}{2\cos{141^{\circ}}\sin{45^{\circ}}} = \tan{141^{\circ}}$.

The period of the tangent function is $180^\circ$, and the tangent function is one-to-one over each period of its domain.

Thus, $19x \equiv 141 \pmod{180}$.

Since $19^2 \equiv 361 \equiv 1 \pmod{180}$, multiplying both sides by $19$ yields $x \equiv 141 \cdot 19 \equiv (140+1)(18+1) \equiv 0+140+18+1 \equiv 159 \pmod{180}$.

Therefore, the smallest positive solution is $x = \boxed{159}$.

Solution 2

$\dfrac{\cos{96^{\circ}}+\sin{96^{\circ}}}{\cos{96^{\circ}}-\sin{96^{\circ}}} = \dfrac{1 + \tan{96^{\circ}}}{1-\tan{96^{\circ}}}$ which is the same as $\dfrac{\tan{45^{\circ}} + \tan{96^{\circ}}}{1-\tan{45^{\circ}}\tan{96^{\circ}}} = \tan{141{^\circ}}$.

So $19x = 141 +180n$, for some integer $n$. Multiplying by $19$ gives $x \equiv 141 \cdot 19 \equiv 2679 \equiv 159 \pmod{180}$. The smallest positive solution of this is $x = \boxed{159}$

Solution 3 (Only sine and cosine sum formulas)

It seems reasonable to assume that $\dfrac{\cos{96^{\circ}}+\sin{96^{\circ}}}{\cos{96^{\circ}}-\sin{96^{\circ}}} = \tan{\theta}$ for some angle $\theta$. This means \[\dfrac{\alpha (\cos{96^{\circ}}+\sin{96^{\circ}})}{\alpha (\cos{96^{\circ}}-\sin{96^{\circ}})} = \frac{\sin{\theta}}{\cos{\theta}}\] for some constant $\alpha$. We can set $\alpha (\cos{96^{\circ}}+\sin{96^{\circ}}) = \sin{\theta}$.Note that if we have $\alpha$ equal to both the sine and cosine of an angle, we can use the sine sum formula (and the cosine sum formula on the denominator). So, since $\sin{45^{\circ}} = \cos{45^{\circ}} = \tfrac{\sqrt{2}}{2}$, if $\alpha = \tfrac{\sqrt{2}}{2}$ we have \[\alpha (\cos{96^{\circ}} + \sin{96^{\circ}}) = \cos{96^{\circ}} \frac{\sqrt{2}}{2} + \sin{96^{\circ}} \frac{\sqrt{2}}{2} = \cos{96^{\circ}} \sin{45^{\circ}} + \sin{96^{\circ}} \cos{45^{\circ}} = \sin{45^{\circ} + 96^{\circ}} = \sin{141^{\circ}}\] from the sine sum formula. For the denominator, from the cosine sum formula, we have \[\alpha (\cos{96^{\circ}} - \sin{96^{\circ}}) = \cos{96^{\circ}} \frac{\sqrt{2}}{2} + \sin{96^{\circ}} \frac{\sqrt{2}}{2} = \cos{96^{\circ}} \cos{45^{\circ}} + \sin{96^{\circ}} \sin{45^{\circ}} = \cos{96^{\circ}  + 45^{\circ}} = \cos{141^{\circ}}.\] This means $\theta = 141^{\circ},$ so $19x = 141 + 180k$ for some positive integer $k$ (since the period of tangent is $180^{\circ}$), or $19 x \equiv 141 \pmod{180}$. Note that the inverse of $19$ modulo $180$ is itself as $19^2 \equiv 361 \equiv 1 \pmod {180}$, so multiplying this congruence by $19$ on both sides gives $x \equiv 2679 \equiv 159 \pmod{180}.$ For the smallest possible $x$, we take $x = \boxed{159}.$

See Also

1996 AIME (ProblemsAnswer KeyResources)
Preceded by
Problem 9
Followed by
Problem 11
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png