Difference between revisions of "2015 AMC 10B Problems/Problem 14"
(→Video Solution) |
|||
Line 11: | Line 11: | ||
Factoring out <math>(x-b)</math> from the equation yields <math>(x-b)(2x-(a+c))=0 \Rightarrow (x-b)\left(x-\frac{a+c}{2}\right)=0</math>. Therefore the roots are <math>b</math> and <math>\frac{a+c}{2}</math>. Because <math>b</math> must be the larger root to maximize the sum of the roots, letting <math>a,b,</math> and <math>c</math> be <math>8,9,</math> and <math>7</math> respectively yields the sum <math>9+\frac{8+7}{2} = 9+7.5 = \boxed{\textbf{(D)}~16.5}</math>. | Factoring out <math>(x-b)</math> from the equation yields <math>(x-b)(2x-(a+c))=0 \Rightarrow (x-b)\left(x-\frac{a+c}{2}\right)=0</math>. Therefore the roots are <math>b</math> and <math>\frac{a+c}{2}</math>. Because <math>b</math> must be the larger root to maximize the sum of the roots, letting <math>a,b,</math> and <math>c</math> be <math>8,9,</math> and <math>7</math> respectively yields the sum <math>9+\frac{8+7}{2} = 9+7.5 = \boxed{\textbf{(D)}~16.5}</math>. | ||
+ | |||
+ | ==Video Solution 1== | ||
+ | https://youtu.be/rkusS2sqCEo | ||
+ | |||
+ | ~Education, the Study of Everything= | ||
==Video Solution== | ==Video Solution== |
Revision as of 16:14, 2 August 2022
Problem
Let , , and be three distinct one-digit numbers. What is the maximum value of the sum of the roots of the equation ?
Solution 1
Expanding the equation and combining like terms results in . By Vieta's formula the sum of the roots is . To maximize this expression we want to be the largest, and from there we can assign the next highest values to and . So let , , and . Then the answer is .
Solution 2
Factoring out from the equation yields . Therefore the roots are and . Because must be the larger root to maximize the sum of the roots, letting and be and respectively yields the sum .
Video Solution 1
~Education, the Study of Everything=
Video Solution
~savannahsolver
See Also
2015 AMC 10B (Problems • Answer Key • Resources) | ||
Preceded by Problem 13 |
Followed by Problem 15 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.