Difference between revisions of "Carmichael number"

Line 5: Line 5:
 
The first <math>7</math> are:
 
The first <math>7</math> are:
  
\begin{align*}
+
\begin{align}
 
561 = & 3 \cdot 11 \cdot 17 \\
 
561 = & 3 \cdot 11 \cdot 17 \\
 
1105 = & 5 \cdot 13 \cdot 17 \\
 
1105 = & 5 \cdot 13 \cdot 17 \\
Line 13: Line 13:
 
6601 = & 7 \cdot 23 \cdot 41 \\
 
6601 = & 7 \cdot 23 \cdot 41 \\
 
8991 = & 7 \cdot 19 \cdot 67
 
8991 = & 7 \cdot 19 \cdot 67
\end{align*}
+
\end{align}
  
 
==See Also==
 
==See Also==

Revision as of 11:26, 2 August 2022

Carmichael numbers

A Carmichael number is a composite numbers that satisfies Fermat's Little Theorem, $a^p \equiv a \pmod{p}.$or $a^{p - 1} \equiv 1 \pmod{p}.$ In this case, $p$ is the Carmichael number.

The first $7$ are:

\begin{align} 561 = & 3 \cdot 11 \cdot 17 \\ 1105 = & 5 \cdot 13 \cdot 17 \\ 1729 = & 7 \cdot 13 \cdot 19 \\ 2465 = & 5 \cdot 17 \cdot 29 \\ 2821 = & 7 \cdot 13 \cdot 31 \\ 6601 = & 7 \cdot 23 \cdot 41 \\ 8991 = & 7 \cdot 19 \cdot 67 \end{align}

See Also

~ User:Enderramsby


This article is a stub. Help us out by expanding it.