Difference between revisions of "1950 AHSME Problems/Problem 20"

(Solution 3)
(Video Solution)
Line 19: Line 19:
  
 
===Video Solution===
 
===Video Solution===
https://www.youtube.com/watch?v=z4-bFo2D3TU&list=PLZ6lgLajy7SZ4MsF6ytXTrVOheuGNnsqn&index=3&t=3s
+
https://youtu.be/z4-bFo2D3TU?list=PLZ6lgLajy7SZ4MsF6ytXTrVOheuGNnsqn&t=2485 - AMBRIGGS
(Solution at 41:25 - AMBRIGGS
 
  
 
==See Also==
 
==See Also==

Revision as of 10:18, 30 July 2022

Problem

When $x^{13}+1$ is divided by $x-1$, the remainder is:

$\textbf{(A)}\ 1\qquad\textbf{(B)}\ -1\qquad\textbf{(C)}\ 0\qquad\textbf{(D)}\ 2\qquad\textbf{(E)}\ \text{None of these answers}$

Solution

Solution 1

Use synthetic division, and get that the remainder is $\boxed{\mathrm{(D)}\ 2.}$

Solution 2

By the remainder theorem, the remainder is equal to the expression $x^{13}+1$ when $x=1.$ This gives the answer of $\boxed{(\mathrm{D})\ 2.}$

Solution 3

Note that $x^{13} - 1 = (x - 1)(x^{12} + x^{11} \cdots + 1)$, so $x^{13} - 1$ is divisible by $x-1$, meaning $(x^{13} - 1) + 2$ leaves a remainder of $\boxed{\mathrm{(D)}\ 2.}$

Video Solution

https://youtu.be/z4-bFo2D3TU?list=PLZ6lgLajy7SZ4MsF6ytXTrVOheuGNnsqn&t=2485 - AMBRIGGS

See Also

1950 AHSC (ProblemsAnswer KeyResources)
Preceded by
Problem 19
Followed by
Problem 21
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png