Difference between revisions of "P Adic Solenoid"

(Created page with "The canonical group homomorphisms <center><cmath>\varphi_n:\mathbb{R}/p^{n+1}\mathbb{Z}\to \mathbb{R}/p^n\mathbb{Z},~x\pmod{p^{n+1}\mathbb{Z}}\mapsto x\pmod{p^n\mathbb{Z}}</cm...")
 
m
 
Line 1: Line 1:
 
The canonical group homomorphisms
 
The canonical group homomorphisms
 
<center><cmath>\varphi_n:\mathbb{R}/p^{n+1}\mathbb{Z}\to \mathbb{R}/p^n\mathbb{Z},~x\pmod{p^{n+1}\mathbb{Z}}\mapsto x\pmod{p^n\mathbb{Z}}</cmath></center>
 
<center><cmath>\varphi_n:\mathbb{R}/p^{n+1}\mathbb{Z}\to \mathbb{R}/p^n\mathbb{Z},~x\pmod{p^{n+1}\mathbb{Z}}\mapsto x\pmod{p^n\mathbb{Z}}</cmath></center>
form a projective system <math>(\mathbb{R}/p^n\mathbb{Z},\varphi_n)_{n\ge 0}</math> of topological groups.  The '''<math>p</math> adic solenoid <math>\mathbb{S}_p</math>''' is a projective limit <math>\mathbb{S}_p=\lim_{\longleftarrow}\mathbb{R}/p^n\mathbb{Z}</math> of the projective system <math>(\mathbb{R}/p^n\mathbb{Z},\varphi_n)_{n\ge 0}</math>.  The <math>p</math> Adic Solenoid is both compact and connected.
+
form a projective system <math>(\mathbb{R}/p^n\mathbb{Z},\varphi_n)_{n\ge 0}</math> of topological groups.  The '''<math>p</math> adic solenoid <math>\mathbb{S}_p</math>''' is a projective limit <math>\mathbb{S}_p=\lim_{\longleftarrow}\mathbb{R}/p^n\mathbb{Z}</math> of the projective system <math>(\mathbb{R}/p^n\mathbb{Z},\varphi_n)_{n\ge 0}</math>.  It is both compact and connected.

Latest revision as of 14:05, 2 July 2022

The canonical group homomorphisms

\[\varphi_n:\mathbb{R}/p^{n+1}\mathbb{Z}\to \mathbb{R}/p^n\mathbb{Z},~x\pmod{p^{n+1}\mathbb{Z}}\mapsto x\pmod{p^n\mathbb{Z}}\]

form a projective system $(\mathbb{R}/p^n\mathbb{Z},\varphi_n)_{n\ge 0}$ of topological groups. The $p$ adic solenoid $\mathbb{S}_p$ is a projective limit $\mathbb{S}_p=\lim_{\longleftarrow}\mathbb{R}/p^n\mathbb{Z}$ of the projective system $(\mathbb{R}/p^n\mathbb{Z},\varphi_n)_{n\ge 0}$. It is both compact and connected.