Difference between revisions of "2007 AMC 10A Problems/Problem 17"
Arcticturn (talk | contribs) (→Solution 2) |
m (→Solution) |
||
Line 5: | Line 5: | ||
== Solution == | == Solution == | ||
− | <math>3 \cdot 5^2m</math> must be a perfect cube, so each power of a prime in the factorization for <math>3 \cdot 5^2m</math> must be divisible by <math>3</math>. Thus the minimum value of <math>m</math> is <math>3^2 \cdot 5 = 45</math>, which makes <math>n = \sqrt[3]{3^3 \cdot 5^3} = 15</math>. The minimum possible value for the sum of <math>m</math> and <math>n</math> is <math> | + | <math>3 \cdot 5^2m</math> must be a perfect cube, so each power of a prime in the factorization for <math>3 \cdot 5^2m</math> must be divisible by <math>3</math>. Thus the minimum value of <math>m</math> is <math>3^2 \cdot 5 = 45</math>, which makes <math>n = \sqrt[3]{3^3 \cdot 5^3} = 15</math>. The minimum possible value for the sum of <math>m</math> and <math>n</math> is <math>\boxed {(D)60}.</math> |
==Solution 2== | ==Solution 2== |
Revision as of 13:35, 30 June 2022
Contents
Problem
Suppose that and are positive integers such that . What is the minimum possible value of ?
Solution
must be a perfect cube, so each power of a prime in the factorization for must be divisible by . Thus the minimum value of is , which makes . The minimum possible value for the sum of and is
Solution 2
First, we need to prime factorize . = . We need to be in the form . Therefore, the smallest is . = 45, and since , our answer is =
~Arcticturn
See also
2007 AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by Problem 16 |
Followed by Problem 18 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.