Difference between revisions of "Law of Tangents"
m (added "see also", stubbed) |
(expand) |
||
Line 1: | Line 1: | ||
{{stub}} | {{stub}} | ||
− | + | The '''Law of Tangents''' states that for any <math>a</math> and <math>b</math> such that <math>\tan a,\tan b \subset \mathbb{R}</math>, | |
<math>\frac{a-b}{a+b}=\frac{\tan(a-b)}{\tan(a+b)}</math> | <math>\frac{a-b}{a+b}=\frac{\tan(a-b)}{\tan(a+b)}</math> | ||
Line 7: | Line 7: | ||
* [[Trigonometry]] | * [[Trigonometry]] | ||
* [[Trigonometric identities]] | * [[Trigonometric identities]] | ||
+ | * [[Law of Sines]] | ||
+ | * [[Law of Cosines]] | ||
+ | |||
+ | [[Category:Trigonometry]] |
Revision as of 15:52, 7 October 2007
This article is a stub. Help us out by expanding it. The Law of Tangents states that for any and such that ,