Difference between revisions of "User:Temperal/The Problem Solver's Resource7"

(combs.)
(description)
Line 6: Line 6:
 
| style="background:lime; border:1px solid black;height:200px;padding:10px;" | {{User:Temperal/testtemplate|page 7}}
 
| style="background:lime; border:1px solid black;height:200px;padding:10px;" | {{User:Temperal/testtemplate|page 7}}
 
==<span style="font-size:20px; color: blue;">Combinatorics</span>==
 
==<span style="font-size:20px; color: blue;">Combinatorics</span>==
 +
This section cover combinatorics, and some binomial/multinomial facts.
 
<!-- will fill in later! -->
 
<!-- will fill in later! -->
 
===Permutations===
 
===Permutations===
Line 18: Line 19:
  
 
===Binomials and Multinomials===
 
===Binomials and Multinomials===
*Binomial Theorem: <math>\displaystyle (x+y)^n=\sum_{r=0}^{n}x^{n-r}y^r</math>
+
*Binomial Theorem: <math>(x+y)^n=\sum_{r=0}^{n}x^{n-r}y^r</math>
 
*Multinomial Coefficients: The number of ways of ordering <math>n</math> objects when <math>r_1</math> of them are of one type, <math>r_2</math> of them are of a second type, ... and <math>r_s</math> of them of another type is <math>\frac{n!}{r_1!r_2!...r_s!}</math>
 
*Multinomial Coefficients: The number of ways of ordering <math>n</math> objects when <math>r_1</math> of them are of one type, <math>r_2</math> of them are of a second type, ... and <math>r_s</math> of them of another type is <math>\frac{n!}{r_1!r_2!...r_s!}</math>
*Multinomial Theorem: <math>(x_1+x_2+x_3...+x_s)^n=\sum \frac{n!}{r_1!r_2!...r_s!} x_1+x_2+x_3...+x_s</math>. The summation is taken over all sums <math>\displaystyle\sum_{i=1}^{s}r_i</math> so that <math>\displaystyle\sum_{i=1}^{s}r_i=n</math>.
+
*Multinomial Theorem: <math>(x_1+x_2+x_3...+x_s)^n=\sum \frac{n!}{r_1!r_2!...r_s!} x_1+x_2+x_3...+x_s</math>. The summation is taken over all sums <math>\sum_{i=1}^{s}r_i</math> so that <math>\sum_{i=1}^{s}r_i=n</math>.
  
 
[[User:Temperal/The Problem Solver's Resource6|Back to page 6]] | [[User:Temperal/The Problem Solver's Resource8|Continue to page 8]]
 
[[User:Temperal/The Problem Solver's Resource6|Back to page 6]] | [[User:Temperal/The Problem Solver's Resource8|Continue to page 8]]
 
|}<br /><br />
 
|}<br /><br />

Revision as of 20:58, 5 October 2007



The Problem Solver's Resource
Introduction | Other Tips and Tricks | Methods of Proof | You are currently viewing page 7.

Combinatorics

This section cover combinatorics, and some binomial/multinomial facts.

Permutations

The factorial of a number $n$ is $n(n-1)(n-2)...(1)$ or also as $\prod_{a=0}^{n-1}(n-a)$,and is denoted by $n!$.

Also, $0!=1$.

The number of ways of arranging $n$ distinct objects in a straight line is $n!$. This is also known as a permutation, and can be notated $\,_{n}P_{r}$

Combinations

The number of ways of choosing $n$ objects from a set of $r$ objects is $\frac{n!}{r!(n-r)!}$, which is notated as either $\,_{n}C_{r}$ or $\binom{n}{r}$. (The latter notation is also known as taking the binomial coefficient.

Binomials and Multinomials

  • Binomial Theorem: $(x+y)^n=\sum_{r=0}^{n}x^{n-r}y^r$
  • Multinomial Coefficients: The number of ways of ordering $n$ objects when $r_1$ of them are of one type, $r_2$ of them are of a second type, ... and $r_s$ of them of another type is $\frac{n!}{r_1!r_2!...r_s!}$
  • Multinomial Theorem: $(x_1+x_2+x_3...+x_s)^n=\sum \frac{n!}{r_1!r_2!...r_s!} x_1+x_2+x_3...+x_s$. The summation is taken over all sums $\sum_{i=1}^{s}r_i$ so that $\sum_{i=1}^{s}r_i=n$.

Back to page 6 | Continue to page 8