Difference between revisions of "2022 AIME I Problems/Problem 11"
(→Solution 5) |
(→Solution 5) |
||
Line 159: | Line 159: | ||
==Solution 5== | ==Solution 5== | ||
− | [[File:AIME 2022 I 11.png| | + | [[File:AIME 2022 I 11.png|630px|right]] |
+ | Let <math>\omega</math> be the circle, let <math>r</math> be the radius of <math>\omega</math>, and let the points at which <math>\omega</math> is tangent to <math>AB</math>, <math>BC</math>, and <math>AD</math> be <math>H</math>, <math>K</math>, and <math>T</math>, respectively. PoP on <math>A</math> and <math>C</math> with respect to <math>\omega</math> yields <cmath>AT=6, CK=20.</cmath> | ||
− | + | Let <math>TG = AC, TG||AT.</math> | |
− | Let <math>TG = AC, TG||AT.</math> In right <math>\triangle KGT | + | |
− | <math>\angle AOB = 90^{\circ}, OH | + | In right <math>\triangle KGT</math> |
− | Area is < | + | <math>KT = \sqrt{GT^2 – (KC + AT)^2} = 6 \sqrt{3}=2r.</math> |
+ | |||
+ | <math>\angle AOB = 90^{\circ}, OH = r = \frac{KT}{2},</math> | ||
+ | <cmath>OH^2 = AH \cdot BH \implies BH = \frac {9}{2}.</cmath> | ||
+ | |||
+ | Area is <cmath>(BK + KC) \cdot KT = (BH + KC) \cdot 2r = \frac{49}{2} \cdot 6\sqrt{3} = 147 \sqrt{3} \implies 147+3 = \boxed{151}.</cmath> | ||
==Video Solution== | ==Video Solution== |
Revision as of 10:46, 31 May 2022
Contents
Problem
Let be a parallelogram with . A circle tangent to sides , , and intersects diagonal at points and with , as shown. Suppose that , , and . Then the area of can be expressed in the form , where and are positive integers, and is not divisible by the square of any prime. Find .
Solution 1 (No trig)
Let's redraw the diagram, but extend some helpful lines.
We obviously see that we must use power of a point since they've given us lengths in a circle and there are intersection points. Let be our tangents from the circle to the parallelogram. By the secant power of a point, the power of . Then . Similarly, the power of and . We let and label the diagram accordingly.
Notice that because . Let be the center of the circle. Since and intersect and , respectively, at right angles, we have is a right-angled trapezoid and more importantly, the diameter of the circle is the height of the triangle. Therefore, we can drop an altitude from to and to , and both are equal to . Since , . Since and . We can now use Pythagorean theorem on ; we have and .
We know that because is a parallelogram. Using Pythagorean theorem on , . Therefore, base . Thus the area of the parallelogram is the base times the height, which is and the answer is
~KingRavi
Solution 2
Let the circle tangent to at separately, denote that
Using POP, it is very clear that , let , using LOC in ,, similarly, use LOC in , getting that . We use the second equation to minus the first equation, getting that , we can get .
Now applying LOC in , getting , solving this equation to get , then , , the area is leads to
~bluesoul
Solution 3
Denote by the center of the circle. Denote by the radius of the circle. Denote by , , the points that the circle meets , , at, respectively.
Because the circle is tangent to , , , , , , .
Because , , , are collinear.
Following from the power of a point, . Hence, .
Following from the power of a point, . Hence, .
Denote . Because and are tangents to the circle, .
Because is a right trapezoid, . Hence, . This can be simplified as \[ 6 x = r^2 . \hspace{1cm} (1) \]
In , by applying the law of cosines, we have \begin{align*} AC^2 & = AB^2 + CB^2 - 2 AB \cdot CB \cos B \\ & = AB^2 + CB^2 + 2 AB \cdot CB \cos A \\ & = AB^2 + CB^2 + 2 AB \cdot CB \cdot \frac{AE - BF}{AB} \\ & = AB^2 + CB^2 + 2 CB \left( AE - BF \right) \\ & = \left( 6 + x \right)^2 + \left( 20 + x \right)^2 + 2 \left( 20 + x \right) \left( 6 - x \right) \\ & = 24 x + 676 . \end{align*}
Because , we get . Plugging this into Equation (1), we get .
Therefore, \begin{align*} {\rm Area} \ ABCD & = CB \cdot EF \\ & = \left( 20 + x \right) \cdot 2r \\ & = 147 \sqrt{3} . \end{align*}
Therefore, the answer is .
~Steven Chen (www.professorchenedu.com)
Solution 4
Let be the circle, let be the radius of , and let the points at which is tangent to , , and be , , and , respectively. Note that PoP on and with respect to yields and . We can compute the area of in two ways:
1. By the half-base-height formula, .
2. We can drop altitudes from the center of to , , and , which have lengths , , and . Thus, .
Equating the two expressions for and solving for yields .
Let . By the Parallelogram Law, . Solving for yields . Thus, , for a final answer of .
~ Leo.Euler
Solution 5
Let be the circle, let be the radius of , and let the points at which is tangent to , , and be , , and , respectively. PoP on and with respect to yields
Let
In right
Area is
Video Solution
https://www.youtube.com/watch?v=FeM_xXiJj0c&t=1s
~Steven Chen (www.professorchenedu.com)
Video Solution 2 (Mathematical Dexterity)
https://www.youtube.com/watch?v=1nDKQkr9NaU
See Also
2022 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 10 |
Followed by Problem 12 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.