Difference between revisions of "2014 AMC 10B Problems/Problem 9"

(Solution)
(Solution 2)
Line 9: Line 9:
  
 
==Solution 2==
 
==Solution 2==
Muliply both sides by <math>\left(\frac{1}{w}-\frac{1}{z}\right)</math> to get <math>\frac{1}{w}+\frac{1}{z}=2014\left(\frac{1}{w}-\frac{1}{z}\right)</math>. Then, add <math>2014\cdot\frac{1}{z}</math> to both sides and subtract <math>\frac{1}{w}</math> from both sides to get <math>2015\cdot\frac{1}{z}=2013\cdot\frac{1}{w}</math>. Then, we can plug in the most simply values for z and w (<math>2015</math> and <math>2013</math>, respectively, and find <math>\frac{2013+2015}{2013-2015}=\frac{2(2014)}{-2}=-2014</math>, oranswer choice <math>\boxed{A}</math>.
+
Muliply both sides by <math>\left(\frac{1}{w}-\frac{1}{z}\right)</math> to get <math>\frac{1}{w}+\frac{1}{z}=2014\left(\frac{1}{w}-\frac{1}{z}\right)</math>. Then, add <math>2014\cdot\frac{1}{z}</math> to both sides and subtract <math>\frac{1}{w}</math> from both sides to get <math>2015\cdot\frac{1}{z}=2013\cdot\frac{1}{w}</math>. Then, we can plug in the most simply values for z and w (<math>2015</math> and <math>2013</math>, respectively), and find <math>\frac{2013+2015}{2013-2015}=\frac{2(2014)}{-2}=-2014</math>, or answer choice <math>\boxed{A}</math>.
  
 
==Video Solution==
 
==Video Solution==

Revision as of 19:15, 29 May 2022

Problem

For real numbers $w$ and $z$, \[\cfrac{\frac{1}{w} + \frac{1}{z}}{\frac{1}{w} - \frac{1}{z}} = 2014.\] What is $\frac{w+z}{w-z}$?

$\textbf{(A) }-2014\qquad\textbf{(B) }\frac{-1}{2014}\qquad\textbf{(C) }\frac{1}{2014}\qquad\textbf{(D) }1\qquad\textbf{(E) }2014$

Solution

Multiply the numerator and denominator of the LHS by $wz$ to get $\frac{z+w}{z-w}=2014$. Then since $z+w=w+z$ and $w-z=-(z-w)$, $\frac{w+z}{w-z}=-\frac{z+w}{z-w}=-2014$, or choice $\boxed{A}$.

Solution 2

Muliply both sides by $\left(\frac{1}{w}-\frac{1}{z}\right)$ to get $\frac{1}{w}+\frac{1}{z}=2014\left(\frac{1}{w}-\frac{1}{z}\right)$. Then, add $2014\cdot\frac{1}{z}$ to both sides and subtract $\frac{1}{w}$ from both sides to get $2015\cdot\frac{1}{z}=2013\cdot\frac{1}{w}$. Then, we can plug in the most simply values for z and w ($2015$ and $2013$, respectively), and find $\frac{2013+2015}{2013-2015}=\frac{2(2014)}{-2}=-2014$, or answer choice $\boxed{A}$.

Video Solution

https://youtu.be/6Uh77bue0bE

~savannahsolver

See Also

2014 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 8
Followed by
Problem 10
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png