Difference between revisions of "Maxwell's Equations"

(Created page with "'''Maxwell's equations''' are a set of four equations that govern electricity and magnetism in physics. They are as follows: <ul> <li> <math>\oiint \mathbf{E} \cdot d\ma...")
 
m (Replaced the flux integral for current with a simple variable I to put Ampere's law in more familiar form.)
Line 6: Line 6:
 
<li> <math>\oiint \mathbf{B} \cdot d\mathbf{A} = 0</math> (Gauss's law of magnetism),
 
<li> <math>\oiint \mathbf{B} \cdot d\mathbf{A} = 0</math> (Gauss's law of magnetism),
 
<li> <math>\oint \mathbf{E} \cdot d\mathbf{\ell} = -\frac{d}{dt} \iint \mathbf{B} \cdot d\mathbf{A}</math> (Faraday's law),
 
<li> <math>\oint \mathbf{E} \cdot d\mathbf{\ell} = -\frac{d}{dt} \iint \mathbf{B} \cdot d\mathbf{A}</math> (Faraday's law),
<li> <math>\oint \mathbf{B} \cdot d\mathbf{\ell} = \mu_0\iint \mathbf{J} \cdot d\mathbf{A} + \mu_0\varepsilon_0 \frac{d}{dt}\iint \mathbf{E} \cdot d\mathbf{A}</math> (Ampere's law).
+
<li> <math>\oint \mathbf{B} \cdot d\mathbf{\ell} = \mu_0I + \mu_0\varepsilon_0 \frac{d}{dt}\iint \mathbf{E} \cdot d\mathbf{A}</math> (Ampere's law).
 
</ul>
 
</ul>
  
 
{{stub}}
 
{{stub}}

Revision as of 11:24, 18 May 2022

Maxwell's equations are a set of four equations that govern electricity and magnetism in physics.

They are as follows:

  • $\oiint \mathbf{E} \cdot d\mathbf{A} = \frac{q_{enc}}{\varepsilon_0}$ (Gauss's law of electricity),
  • $\oiint \mathbf{B} \cdot d\mathbf{A} = 0$ (Gauss's law of magnetism),
  • $\oint \mathbf{E} \cdot d\mathbf{\ell} = -\frac{d}{dt} \iint \mathbf{B} \cdot d\mathbf{A}$ (Faraday's law),
  • $\oint \mathbf{B} \cdot d\mathbf{\ell} = \mu_0I + \mu_0\varepsilon_0 \frac{d}{dt}\iint \mathbf{E} \cdot d\mathbf{A}$ (Ampere's law).

This article is a stub. Help us out by expanding it.