Difference between revisions of "2004 AMC 10B Problems/Problem 24"
Coolmath2017 (talk | contribs) (→Solution 3) |
|||
Line 45: | Line 45: | ||
</asy> | </asy> | ||
Let <math>E = \overline{BC}\cap \overline{AD}</math>. Observe that <math>\angle ABC \cong \angle ADC</math> because they subtend the same arc, <math>\overarc{AC}</math>. Furthermore, <math>\angle BAE \cong \angle EAC</math> because <math>\overline{AE}</math> is an angle bisector, so <math>\triangle ABE \sim \triangle ADC</math> by <math>\text{AA}</math> similarity. Then <math>\dfrac{AD}{AB} = \dfrac{CD}{BE}</math>. By the [[Angle Bisector Theorem]], <math>\dfrac{7}{BE} = \dfrac{8}{CE}</math>, so <math>\dfrac{7}{BE} = \dfrac{8}{9-BE}</math>. This in turn gives <math>BE = \frac{21}{5}</math>. Plugging this into the similarity proportion gives: <math>\dfrac{AD}{7} = \dfrac{CD}{\tfrac{21}{5}} \implies \dfrac{AD}{CD} = {\dfrac{5}{3}} = \boxed{\text{(B)}}</math>. | Let <math>E = \overline{BC}\cap \overline{AD}</math>. Observe that <math>\angle ABC \cong \angle ADC</math> because they subtend the same arc, <math>\overarc{AC}</math>. Furthermore, <math>\angle BAE \cong \angle EAC</math> because <math>\overline{AE}</math> is an angle bisector, so <math>\triangle ABE \sim \triangle ADC</math> by <math>\text{AA}</math> similarity. Then <math>\dfrac{AD}{AB} = \dfrac{CD}{BE}</math>. By the [[Angle Bisector Theorem]], <math>\dfrac{7}{BE} = \dfrac{8}{CE}</math>, so <math>\dfrac{7}{BE} = \dfrac{8}{9-BE}</math>. This in turn gives <math>BE = \frac{21}{5}</math>. Plugging this into the similarity proportion gives: <math>\dfrac{AD}{7} = \dfrac{CD}{\tfrac{21}{5}} \implies \dfrac{AD}{CD} = {\dfrac{5}{3}} = \boxed{\text{(B)}}</math>. | ||
+ | |||
+ | ==Solution 3== | ||
+ | We know that <math>\overline{AD}</math> bisects <math>\angle BAC</math>, so <math>\angle BAD = \angle CAD</math>. Additionally, <math>\angle BAD</math> and <math>\angle BCD</math> subtend the same arc, giving <math>\angle BAD = \angle BCD</math>. Similarly, <math>\angle CAD = \angle CBD</math> and <math>\angle ABC = \angle ADC</math>. | ||
+ | |||
+ | These angle relationships tell us that <math>\triangle ABE\sim \triangle ADC</math> by AA Similarity, so <math>AD/CD = AB/BE</math>. By the angle bisector theorem, <math>AB/BE = AC/CE</math>. Hence, | ||
+ | <cmath>\frac{AB}{BE} = \frac{AC}{CE} = \frac{AB + AC}{BE + CE} = \frac{AB + AC}{BC} = \frac{7 + 8}{9} = \frac{15}{9} = \boxed{\text{(B)} \frac{5}{3}}.</cmath> | ||
+ | |||
+ | --vaporwave | ||
== See Also == | == See Also == |
Revision as of 17:16, 21 April 2022
Problem
In triangle we have , , . Point is on the circumscribed circle of the triangle so that bisects angle . What is the value of ?
Solution 1
Set 's length as . 's length must also be since and intercept arcs of equal length (because ). Using Ptolemy's Theorem, . The ratio is
Solution 2
Let . Observe that because they subtend the same arc, . Furthermore, because is an angle bisector, so by similarity. Then . By the Angle Bisector Theorem, , so . This in turn gives . Plugging this into the similarity proportion gives: .
Solution 3
We know that bisects , so . Additionally, and subtend the same arc, giving . Similarly, and .
These angle relationships tell us that by AA Similarity, so . By the angle bisector theorem, . Hence,
--vaporwave
See Also
2004 AMC 10B (Problems • Answer Key • Resources) | ||
Preceded by Problem 23 |
Followed by Problem 25 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.