Difference between revisions of "2022 USAJMO Problems"

(Problem 1)
Line 39: Line 39:
 
| width="50%" align="center" rowspan="{{{rowsf|1}}}" | {{{aftertext|Followed&nbsp;by<br/>}}}'''{{{after|[[2023 USAJMO]]}}}'''
 
| width="50%" align="center" rowspan="{{{rowsf|1}}}" | {{{aftertext|Followed&nbsp;by<br/>}}}'''{{{after|[[2023 USAJMO]]}}}'''
 
|-
 
|-
| colspan="3" style="text-align:center;" | [[2021 USAJMO Problems/Problem 1|1]] '''•''' [[2021 USAJMO Problems/Problem 2|2]] '''•''' [[2022 USAJMO Problems/Problem 3|3]] '''•''' [[2022 USAJMO Problems/Problem 4|4]] '''•''' [[2022 USAJMO Problems/Problem 5|5]] '''•''' [[2021 USAJMO Problems/Problem 2|6]]
+
| colspan="3" style="text-align:center;" | [[2022 USAJMO Problems/Problem 1|1]] '''•''' [[2022 USAJMO Problems/Problem 2|2]] '''•''' [[2022 USAJMO Problems/Problem 3|3]] '''•''' [[2022 USAJMO Problems/Problem 4|4]] '''•''' [[2022 USAJMO Problems/Problem 5|5]] '''•''' [[2022 USAJMO Problems/Problem 6|6]]
 
|-
 
|-
 
| colspan="3" style="text-align:center;" | '''[[USAJMO Problems and Solutions | All USAJMO Problems and Solutions]]'''
 
| colspan="3" style="text-align:center;" | '''[[USAJMO Problems and Solutions | All USAJMO Problems and Solutions]]'''

Revision as of 20:06, 19 April 2022

Day 1

$\textbf{Note:}$ For any geometry problem whose statement begins with an asterisk $(*)$, the first page of the solution must be a large, in-scale, clearly labeled diagram. Failure to meet this requirement will result in an automatic 1-point deduction.

Problem 1

Solution For which positive integers $m$ does there exist an infinite arithmetic sequence of integers $a_1,a_2,\cdots$ and an infinite geometric sequence of integers $g_1,g_2,\cdots$ satisfying the following properties?

$\bullet$ $a_n-g_n$ is divisible by $m$ for all integers $n>1$;

$\bullet$ $a_2-a_1$ is not divisible by $m$.

Problem 2

Solution

Problem 3

Solution

Day 2

Problem 4

Solution

Problem 5

Solution

Problem 6

Solution

2021 USAJMO (ProblemsResources)
Preceded by
2021 USAJMO
Followed by
2023 USAJMO
1 2 3 4 5 6
All USAJMO Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png