Difference between revisions of "Standard deviation"
(Created page with "The <b> standard deviation </b> of a data set is a measure of how "spread out" the data points are in general. Unlike range, which only measures the difference between the...") |
|||
Line 2: | Line 2: | ||
==Formula== | ==Formula== | ||
− | For an entire [[population]], the standard deviation is the [[square root]] of the [[variance]]. Explicitly, for a dataset <math>X = \{ x_1, x_2, x_3, \dots, x_n \}</math> with [[Arithmetic mean|mean]] <math>\overline{x}</math> the formula for population standard deviation is <cmath>\sigma = \sqrt{\frac{1}{n}\sum_{i=1}^n (x_i - \overline{x})}.</cmath> However, if <math>X</math> is only a [[sample]] then not only does the formula for variance change due to <b>Bessel's correction</b>, but the calculated standard deviation ceases to equal the square root of the calculated variance. Usually, a good approximation when <math>X</math> is a sample is <cmath>s = \sqrt{\frac{1}{n - \frac{3}{2}}\sum_{i=1}^n (x_i - \overline{x})}.</cmath> Conventionally, <math>s</math> denotes sample standard deviation, while <math>\sigma</math> denotes population standard deviation. | + | For an entire [[population]], the standard deviation is the [[square root]] of the [[variance]]. Explicitly, for a dataset <math>X = \{ x_1, x_2, x_3, \dots, x_n \}</math> with [[Arithmetic mean|mean]] <math>\overline{x}</math> the formula for population standard deviation is <cmath>\sigma = \sqrt{\frac{1}{n}\sum_{i=1}^n (x_i - \overline{x})^2}.</cmath> However, if <math>X</math> is only a [[sample]] then not only does the formula for variance change due to <b>Bessel's correction</b>, but the calculated standard deviation ceases to equal the square root of the calculated variance. Usually, a good approximation when <math>X</math> is a sample is <cmath>s = \sqrt{\frac{1}{n - \frac{3}{2}}\sum_{i=1}^n (x_i - \overline{x})^2}.</cmath> Conventionally, <math>s</math> denotes sample standard deviation, while <math>\sigma</math> denotes population standard deviation. |
{{stub}} | {{stub}} |
Revision as of 17:33, 3 March 2022
The standard deviation of a data set is a measure of how "spread out" the data points are in general. Unlike range, which only measures the difference between the maximum and minimum, standard deviation measures the size of differences across the whole data set.
Formula
For an entire population, the standard deviation is the square root of the variance. Explicitly, for a dataset with mean the formula for population standard deviation is However, if is only a sample then not only does the formula for variance change due to Bessel's correction, but the calculated standard deviation ceases to equal the square root of the calculated variance. Usually, a good approximation when is a sample is Conventionally, denotes sample standard deviation, while denotes population standard deviation.
This article is a stub. Help us out by expanding it.