Difference between revisions of "User:Temperal/The Problem Solver's Resource1"
(→Errata: intro) |
m (nice idea; hope you don't mind if I edit) |
||
Line 22: | Line 22: | ||
<math>\cos (90-A)=\sin A</math> | <math>\cos (90-A)=\sin A</math> | ||
− | <math>\ | + | <math>\tan (90-A)=\cot A</math> |
− | === | + | ===Sum of Angle Formulas=== |
<math>\sin (A \pm B)=\sin A \cos B \pm \cos A \sin B</math> | <math>\sin (A \pm B)=\sin A \cos B \pm \cos A \sin B</math> | ||
Line 40: | Line 40: | ||
<math>\tan2A=\frac{2\tan A}{1-\tan^2 A}</math> | <math>\tan2A=\frac{2\tan A}{1-\tan^2 A}</math> | ||
+ | ===Pythagorean identities=== | ||
+ | |||
+ | <math>\sin^2 A+\cos^2 A=1</math> | ||
+ | |||
+ | <math>1 + \tan^2 A = \sec^2 A</math> | ||
+ | |||
+ | <math>1 + \cot^2 A = \csc^2 A</math> | ||
+ | |||
+ | for all <math>A</math>. | ||
===Other Formulas=== | ===Other Formulas=== | ||
Line 51: | Line 60: | ||
<math>\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}</math> | <math>\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}</math> | ||
− | + | The [[area]] of a triangle can be found by | |
− | |||
− | |||
− | |||
+ | <math>\frac 12ab\sin C</math> | ||
[[User:Temperal/The Problem Solver's Resource|Back to intro]] | [[User:Temperal/The Problem Solver's Resource2|Continue to page 2]] | [[User:Temperal/The Problem Solver's Resource|Back to intro]] | [[User:Temperal/The Problem Solver's Resource2|Continue to page 2]] | ||
|}<br /><br /> | |}<br /><br /> |
Revision as of 16:08, 29 September 2007
Page 1: Trigonometric FormulasNote that all measurements are in degrees, not radians. Basic Facts
Sum of Angle Formulas
or or
Pythagorean identities
for all . Other FormulasIn a triangle with sides , , and opposite angles , , and , respectively,
and
The area of a triangle can be found by
|