Difference between revisions of "User:Temperal/The Problem Solver's Resource2"

(Cauchy-Schwarz variation)
(Cauchy-Schwarz inequality: capitalization)
Line 14: Line 14:
  
  
===Cauchy-Schwarz inequality===
+
===Cauchy-Schwarz Inequality===
  
 
For any real numbers <math>a_1,a_2,...,a_n</math> and <math>b_1,b_2,...,b_n</math>, the following holds:
 
For any real numbers <math>a_1,a_2,...,a_n</math> and <math>b_1,b_2,...,b_n</math>, the following holds:
Line 20: Line 20:
 
<math>(\sum a_i^2)(\sum b_i^2) \ge (\sum a_ib_i)^2</math>
 
<math>(\sum a_i^2)(\sum b_i^2) \ge (\sum a_ib_i)^2</math>
  
====Cauchy-Schwarz variation====
+
====Cauchy-Schwarz Variation====
  
 
For any real numbers <math>a_1,a_2,...,a_n</math> and positive real numbers <math>b_1,b_2,...,b_n</math>, the following holds:
 
For any real numbers <math>a_1,a_2,...,a_n</math> and positive real numbers <math>b_1,b_2,...,b_n</math>, the following holds:

Revision as of 14:54, 29 September 2007



The Problem Solver's Resource
Introduction | Other Tips and Tricks | Methods of Proof | You are currently viewing page 2.

Simple Number Theory

This is a collection of essential AIME-level number theory theorems and other tidbits.

Trivial Inequality

For any real $x$, $x^2\ge 0$, with equality iff $x=0$.

Arithmetic Mean/Geometric Mean Inequality

For any set of real numbers $S$, $\frac{S_1+S_2+S_3....+S_{k-1}+S_k}{k}\ge \sqrt[k]{S_1\cdot S_2 \cdot S_3....\cdot S_{k-1}\cdot S_k}$ with equality iff $S_1=S_2=S_3...=S_{k-1}=S_k$.


Cauchy-Schwarz Inequality

For any real numbers $a_1,a_2,...,a_n$ and $b_1,b_2,...,b_n$, the following holds:

$(\sum a_i^2)(\sum b_i^2) \ge (\sum a_ib_i)^2$

Cauchy-Schwarz Variation

For any real numbers $a_1,a_2,...,a_n$ and positive real numbers $b_1,b_2,...,b_n$, the following holds:

$\sum\left({{a_i^2}\over{b_i}}\right) \ge {{\sum a_i^2}\over{\sum b_i}}$.


Back to page 1 | Continue to page 3