Difference between revisions of "2022 AIME I Problems/Problem 4"
MRENTHUSIASM (talk | contribs) (Added in detail explanation.) |
|||
Line 1: | Line 1: | ||
− | == | + | ==Problem== |
− | + | Let <math>w = \dfrac{\sqrt{3} + i}{2}</math> and <math>z = \dfrac{-1 + i\sqrt{3}}{2},</math> where <math>i = \sqrt{-1}.</math> Find the number of ordered pairs <math>(r,s)</math> of positive integers not exceeding <math>100</math> that satisfy the equation <math>i \cdot w^r = z^s.</math> | |
− | + | ==Solution== | |
− | + | We rewrite <math>w</math> and <math>z</math> in polar form: | |
+ | <cmath>\begin{align*} | ||
+ | w &= e^{i\cdot\frac{\pi}{6}}, \\ | ||
+ | z &= e^{i\cdot\frac{2\pi}{3}}. | ||
+ | \end{align*}</cmath> | ||
+ | The equation <math>i \cdot w^r = z^s</math> becomes | ||
+ | <cmath>\begin{align*} | ||
+ | e^{i\cdot\frac{\pi}{2}} \cdot \left(e^{i\cdot\frac{\pi}{6}}\right)^r &= \left(e^{i\cdot\frac{2\pi}{3}}\right)^s \\ | ||
+ | e^{i\left(\frac{\pi}{2}+\frac{\pi}{6}r\right)} &= e^{i\left(\frac{2\pi}{3}s\right)}. | ||
+ | \end{align*}</cmath> | ||
+ | Note that <math>\frac{\pi}{2}+\frac{\pi}{6}r=\frac{2\pi}{3}s+2\pi k</math> for some integer <math>k,</math> or | ||
− | ~bluesoul | + | ~MRENTHUSIASM ~bluesoul |
+ | |||
+ | ==See Also== | ||
+ | {{AIME box|year=2022|n=I|num-b=3|num-a=5}} | ||
+ | {{MAA Notice}} |
Revision as of 16:39, 17 February 2022
Problem
Let and where Find the number of ordered pairs of positive integers not exceeding that satisfy the equation
Solution
We rewrite and in polar form: The equation becomes Note that for some integer or
~MRENTHUSIASM ~bluesoul
See Also
2022 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 3 |
Followed by Problem 5 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.