Difference between revisions of "2022 AMC 8 Problems/Problem 24"
Line 3: | Line 3: | ||
The figure below shows a polygon <math>ABCDEFGH</math>, consisting of rectangles and right triangles. When cut out and folded on the dotted lines, the polygon forms a triangular prism. Suppose that <math>AH = EF = 8</math> and <math>GH = 14</math>. What is the volume of the prism? | The figure below shows a polygon <math>ABCDEFGH</math>, consisting of rectangles and right triangles. When cut out and folded on the dotted lines, the polygon forms a triangular prism. Suppose that <math>AH = EF = 8</math> and <math>GH = 14</math>. What is the volume of the prism? | ||
− | + | <asy> | |
+ | usepackage("mathptmx"); | ||
+ | unitsize(1cm); | ||
+ | defaultpen(linewidth(0.7)+fontsize(11)); | ||
+ | real r = 2, s = 2.5, theta = 14; | ||
+ | pair G = (0,0), F = (r,0), C = (r,s), B = (0,s), M = (C+F)/2, I = M + s/2 * dir(-theta); | ||
+ | pair N = (B+G)/2, J = N + s/2 * dir(180+theta); | ||
+ | pair E = F + r * dir(- 45 - theta/2), D = I+E-F; | ||
+ | pair H = J + r * dir(135 + theta/2), A = B+H-J; | ||
+ | draw(A--B--C--I--D--E--F--G--J--H--cycle^^rightanglemark(F,I,C)^^rightanglemark(G,J,B)); | ||
+ | draw(J--B--G^^C--F--I,linetype ("4 4")); | ||
+ | dot("$A$",A,N); | ||
+ | dot("$B$",B,1.2*N); | ||
+ | dot("$C$",C,N); | ||
+ | dot("$D$",D,dir(0)); | ||
+ | dot("$E$",E,S); | ||
+ | dot("$F$",F,1.5*S); | ||
+ | dot("$G$",G,S); | ||
+ | dot("$H$",H,W); | ||
+ | dot("$I$",I,NE); | ||
+ | dot("$J$",J,1.5*S); | ||
+ | </asy> | ||
<math>\textbf{(A)} ~112\qquad\textbf{(B)} ~128\qquad\textbf{(C)} ~192\qquad\textbf{(D)} ~240\qquad\textbf{(E)} ~288\qquad</math> | <math>\textbf{(A)} ~112\qquad\textbf{(B)} ~128\qquad\textbf{(C)} ~192\qquad\textbf{(D)} ~240\qquad\textbf{(E)} ~288\qquad</math> | ||
Line 12: | Line 33: | ||
Since <math>\overline{GH}=14,</math> then <math>\overline{JG}=14-8=6.</math> So, the area of <math>\triangle BJG</math> is <math>\frac{8\cdot6}{2}=24.</math> If we let <math>\triangle BJG</math> be the base, then the height is <math>\overline{FG}=8.</math> So, the volume is <math>24\cdot8=\boxed{192~\textbf{(C)}}.</math> | Since <math>\overline{GH}=14,</math> then <math>\overline{JG}=14-8=6.</math> So, the area of <math>\triangle BJG</math> is <math>\frac{8\cdot6}{2}=24.</math> If we let <math>\triangle BJG</math> be the base, then the height is <math>\overline{FG}=8.</math> So, the volume is <math>24\cdot8=\boxed{192~\textbf{(C)}}.</math> | ||
+ | |||
+ | Solution by aops-g5-gethsemanea2 |
Revision as of 19:00, 28 January 2022
Problem
The figure below shows a polygon , consisting of rectangles and right triangles. When cut out and folded on the dotted lines, the polygon forms a triangular prism. Suppose that
and
. What is the volume of the prism?
Solution
We try to visualize the prism by folding it in our heads. Then, goes on
goes on
and
goes on
So,
and
Also,
becomes an edge parallel to
so that means
Since then
So, the area of
is
If we let
be the base, then the height is
So, the volume is
Solution by aops-g5-gethsemanea2