Difference between revisions of "2022 AMC 8 Problems/Problem 17"
m (→Problem) |
(Added solution) |
||
Line 3: | Line 3: | ||
If <math>n</math> is an even positive integer, the <i>double factorial</i> notation <math>n!!</math> represents the product of all the even integers from <math>2</math> to <math>n</math>. For example, <math>8!! = 2 \cdot 4 \cdot 6 \cdot 8</math>. What is the units digit of the following sum? <cmath>2!! + 4!! + 6!! + \cdots + 2018!! + 2020!! + 2022!!</cmath> | If <math>n</math> is an even positive integer, the <i>double factorial</i> notation <math>n!!</math> represents the product of all the even integers from <math>2</math> to <math>n</math>. For example, <math>8!! = 2 \cdot 4 \cdot 6 \cdot 8</math>. What is the units digit of the following sum? <cmath>2!! + 4!! + 6!! + \cdots + 2018!! + 2020!! + 2022!!</cmath> | ||
− | <math>\textbf{(A)} | + | <math>\textbf{(A) } 0\qquad\textbf{(B) } 2\qquad\textbf{(C) } 4\qquad\textbf{(D) } 6\qquad\textbf{(E) } 8\qquad</math> |
==Solution== | ==Solution== | ||
+ | |||
+ | Notice that once <math>n>8,</math> <math>n!!</math>’s units digit will be <math>0</math> because there will be a factor of <math>10</math>. Thus, we only need to calculate the units digit of <math>2!!+4!!+6!!+8!! = 2+2\cdot 4+2\cdot 4\cdot 6 + 2\cdot 4\cdot 6\cdot 8 = 2+8+48+48\cdot 8.</math> We only care about units digits so we have <math>2+8+8+8\cdot 8</math> Which is <math>2+8+8+4= \boxed{\textbf{(B) }2}</math> | ||
+ | |||
+ | ~wamofan | ||
==See Also== | ==See Also== | ||
{{AMC8 box|year=2022|num-b=16|num-a=18}} | {{AMC8 box|year=2022|num-b=16|num-a=18}} | ||
{{MAA Notice}} | {{MAA Notice}} |
Revision as of 13:11, 28 January 2022
Problem
If is an even positive integer, the double factorial notation represents the product of all the even integers from to . For example, . What is the units digit of the following sum?
Solution
Notice that once ’s units digit will be because there will be a factor of . Thus, we only need to calculate the units digit of We only care about units digits so we have Which is
~wamofan
See Also
2022 AMC 8 (Problems • Answer Key • Resources) | ||
Preceded by Problem 16 |
Followed by Problem 18 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AJHSME/AMC 8 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.