Difference between revisions of "2006 AMC 10B Problems/Problem 15"
Dairyqueenxd (talk | contribs) (→Problem) |
Dairyqueenxd (talk | contribs) (→Solutions) |
||
Line 16: | Line 16: | ||
<math> \textbf{(A) } 6\qquad \textbf{(B) } 4\sqrt{3}\qquad \textbf{(C) } 8\qquad \textbf{(D) } 9\qquad \textbf{(E) } 6\sqrt{3} </math> | <math> \textbf{(A) } 6\qquad \textbf{(B) } 4\sqrt{3}\qquad \textbf{(C) } 8\qquad \textbf{(D) } 9\qquad \textbf{(E) } 6\sqrt{3} </math> | ||
− | + | == Solution 1 == | |
− | |||
Using the property that opposite angles are equal in a [[rhombus]], <math> \angle DAB = \angle DCB = 60 ^\circ </math> and <math> \angle ADC = \angle ABC = 120 ^\circ </math>. It is easy to see that rhombus <math>ABCD</math> is made up of [[equilateral triangle]]s <math>DAB</math> and <math>DCB</math>. Let the lengths of the sides of rhombus <math>ABCD</math> be <math>s</math>. | Using the property that opposite angles are equal in a [[rhombus]], <math> \angle DAB = \angle DCB = 60 ^\circ </math> and <math> \angle ADC = \angle ABC = 120 ^\circ </math>. It is easy to see that rhombus <math>ABCD</math> is made up of [[equilateral triangle]]s <math>DAB</math> and <math>DCB</math>. Let the lengths of the sides of rhombus <math>ABCD</math> be <math>s</math>. | ||
Line 24: | Line 23: | ||
The ratio of the longer diagonal of rhombus <math>BFDE</math> to rhombus <math>ABCD</math> is <math> \frac{s}{s\sqrt{3}} = \frac{\sqrt{3}}{3}</math>. Therefore, the ratio of the [[area]] of rhombus <math>BFDE</math> to rhombus <math>ABCD</math> is <math> \left( \frac{\sqrt{3}}{3} \right) ^2 = \frac{1}{3} </math>. | The ratio of the longer diagonal of rhombus <math>BFDE</math> to rhombus <math>ABCD</math> is <math> \frac{s}{s\sqrt{3}} = \frac{\sqrt{3}}{3}</math>. Therefore, the ratio of the [[area]] of rhombus <math>BFDE</math> to rhombus <math>ABCD</math> is <math> \left( \frac{\sqrt{3}}{3} \right) ^2 = \frac{1}{3} </math>. | ||
− | Let <math>x</math> be the area of rhombus <math>BFDE</math>. Then <math> \frac{x}{24} = \frac{1}{3} </math>, so <math> x = | + | Let <math>x</math> be the area of rhombus <math>BFDE</math>. Then <math> \frac{x}{24} = \frac{1}{3} </math>, so <math> x = \boxed{\textbf{(C) }8}</math>. |
− | + | == Solution 2 == | |
− | Triangle DAB is equilateral so triangles <math>DEA</math>, <math>AEB</math>, <math>BED</math>, <math>BFD</math>, <math>BFC</math> and <math>CFD</math> are all congruent with angles <math>30^\circ</math>, <math>30^\circ</math> and <math>120^\circ</math> from which it follows that rhombus <math>BFDE</math> has one third the area of rhombus <math>ABCD</math> i.e. <math>8 \Longrightarrow \boxed{\ | + | Triangle DAB is equilateral so triangles <math>DEA</math>, <math>AEB</math>, <math>BED</math>, <math>BFD</math>, <math>BFC</math> and <math>CFD</math> are all congruent with angles <math>30^\circ</math>, <math>30^\circ</math> and <math>120^\circ</math> from which it follows that rhombus <math>BFDE</math> has one third the area of rhombus <math>ABCD</math> i.e. <math>8 \Longrightarrow \boxed{\textbf{(C) }8} </math>. |
== See Also == | == See Also == |
Revision as of 13:20, 26 January 2022
Contents
Problem
Rhombus is similar to rhombus . The area of rhombus is and . What is the area of rhombus ?
Solution 1
Using the property that opposite angles are equal in a rhombus, and . It is easy to see that rhombus is made up of equilateral triangles and . Let the lengths of the sides of rhombus be .
The longer diagonal of rhombus is . Since is a side of an equilateral triangle with a side length of , . The longer diagonal of rhombus is . Since is twice the length of an altitude of of an equilateral triangle with a side length of , .
The ratio of the longer diagonal of rhombus to rhombus is . Therefore, the ratio of the area of rhombus to rhombus is .
Let be the area of rhombus . Then , so .
Solution 2
Triangle DAB is equilateral so triangles , , , , and are all congruent with angles , and from which it follows that rhombus has one third the area of rhombus i.e. .
See Also
2006 AMC 10B (Problems • Answer Key • Resources) | ||
Preceded by Problem 14 |
Followed by Problem 16 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.