Difference between revisions of "2021 Fall AMC 12B Problems/Problem 25"
m (→Solution 1: two changes in spelling to aid clarity) |
|||
Line 7: | Line 7: | ||
==Solution 1== | ==Solution 1== | ||
− | Note that we can add <math>9</math> to <math>R(n)</math> to get <math>R(n+1)</math>, but must subtract <math>k</math> for all <math>k|n+1</math>. Hence, we see that there are four ways to do that because <math>9=7+2=6+3=5+4=4+3+2</math>. Note that only <math>7+2</math> is a plausible option, since <math>4+3+2</math> indicates <math>n+1</math> is divisible by <math>6</math>, <math>5+4</math> indicates that <math>n+1</math> is divisible by <math>2</math>, <math>6+3</math> indicates <math>n+1</math> is | + | Note that we can add <math>9</math> to <math>R(n)</math> to get <math>R(n+1)</math>, but must subtract <math>k</math> for all <math>k|n+1</math>. Hence, we see that there are four ways to do that because <math>9=7+2=6+3=5+4=4+3+2</math>. Note that only <math>7+2</math> is a plausible option, since <math>4+3+2</math> indicates <math>n+1</math> is divisible by <math>6</math>, <math>5+4</math> indicates that <math>n+1</math> is divisible by <math>2</math>, <math>6+3</math> indicates <math>n+1</math> is divisible by <math>2</math>, and <math>9</math> itself indicates divisibility by <math>3</math>, too. So, <math>14|n+1</math> and <math>n+1</math> is not divisible by any positive integers from <math>2</math> to <math>10</math>, inclusive, except <math>2</math> and <math>7</math>. We check and get that only <math>n+1=14 \cdot 1</math> and <math>n+1=14 \cdot 7</math> give possible solutions so our answer is <math>\boxed{\textbf{(C) }2}</math>. |
- kevinmathz | - kevinmathz |
Revision as of 01:26, 26 January 2022
Problem
For a positive integer, let
be the sum of the remainders when
is divided by
,
,
,
,
,
,
,
, and
. For example,
. How many two-digit positive integers
satisfy
Solution 1
Note that we can add to
to get
, but must subtract
for all
. Hence, we see that there are four ways to do that because
. Note that only
is a plausible option, since
indicates
is divisible by
,
indicates that
is divisible by
,
indicates
is divisible by
, and
itself indicates divisibility by
, too. So,
and
is not divisible by any positive integers from
to
, inclusive, except
and
. We check and get that only
and
give possible solutions so our answer is
.
- kevinmathz
Solution 2
Denote by the remainder of
divided by
.
Define
.
Hence,
Hence, this problem asks us to find all , such that
.
:
.
We have .
Therefore, there is no in this case.
:
and
.
The condition implies
.
This further implies
.
Hence,
.
To get , we have
.
However, we have .
Therefore, there is no in this case.
:
for
and
.
The condition implies
with
.
Hence,
and
.
To get , we have
.
However, we have .
Therefore, there is no in this case.
:
for
and
.
To get , we have
.
Hence, we must have and
for
.
Therefore, .
:
for
and
.
The condition implies
with
.
Hence,
and
.
To get , we have
.
However, we have .
Therefore, there is no in this case.
:
for
and
.
To get , we have
.
This can be achieved if ,
,
.
However, implies
. This implies
. Hence,
.
We get a contradiction.
Therefore, there is no in this case.
:
for
and
.
The condition implies
with
.
Hence,
.
To get , we have
. This implies
.
Because and
, we have
.
Hence,
.
However, in this case, we assume
.
We get a contradiction.
Therefore, there is no in this case.
:
for
and
.
To get , we have
. This is infeasible.
Therefore, there is no in this case.
:
for
.
To get , we have
. This is infeasible.
Therefore, there is no in this case.
Putting all cases together, the answer is .
~Steven Chen (www.professorchenedu.com)
Video Solution by Mathematical Dexterity
https://www.youtube.com/watch?v=Fy8wU4VAzkQ
2021 Fall AMC 12B (Problems • Answer Key • Resources) | |
Preceded by Problem 24 |
Followed by Last problem |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.