Difference between revisions of "2010 AMC 12A Problems/Problem 8"
(→Solution 3 (Similar Triangles)) |
(→Solution 2(Trig and Angle Chasing)) |
||
Line 19: | Line 19: | ||
== Solution 2(Trig and Angle Chasing) == | == Solution 2(Trig and Angle Chasing) == | ||
− | Let < | + | Let <cmath>AB=2a, AC=a</cmath> |
+ | Let <cmath>\angle BAE=\angle ACD=x</cmath> | ||
+ | Because <math>\triangle CFE</math> is equilateral, we get <math>\angle FCE=60</math>, so <math>\angle ACB=60+x</math> | ||
− | By | + | Because <math>\triangle CFE</math> is equilateral, we get <math>\angle CFE=60</math>. |
+ | |||
+ | Angles <math>AFD</math> and <math>CFE</math> are vertical, so <math>\angle AFD=60</math>. | ||
+ | |||
+ | By triangle <math>ADF</math>, we have <math>\angle ADF=120-x</math>, and because of line <math>AB</math>, we have <math>\angle BDC=60+x</math>. | ||
+ | |||
+ | Because Of line <math>BC</math>, we have <math>\angle AEB=120</math>, and by line <math>CD</math>, we have <math>\angle DFE=120</math>. | ||
+ | |||
+ | By quadrilateral <math>BDFE</math>, we have <math>\angle ABC=60-x</math>. | ||
+ | |||
+ | By the Law of Sines: | ||
+ | <cmath>\frac{\sin(60-x)}{a}=\frac{\sin(60+x)}{2a}\implies \sin(60-x)=\frac{\sin(60+x)}{2}\implies 2\sin(60-x)=\sin(60+x)</cmath> | ||
+ | |||
+ | By the sine addition formula(<math>\sin(a+b)=\sin(a)\cos(b)+\cos(a)\sin(b)</math>): | ||
+ | <cmath>2(\sin(60)\cos(-x)+\cos(60)\sin(-x))=\sin(60)\cos(x)+\cos(60)\sin(x)</cmath> | ||
+ | |||
+ | Because cosine is an even function, and sine is an odd function, we have <cmath>2\sin(60)\cos(x)-2\cos(60)\sin(x)=\sin(60)\cos(x)+\cos(60)\sin(x) \implies \sin(60)\cos(x)=3\cos(60)\sin(x)</cmath> | ||
+ | |||
+ | We know that <math>\sin(60)=\frac{\sqrt{3}}{2}</math>, and <math>\cos(60)=\frac{1}{2}</math>, hence | ||
+ | <cmath>\frac{\sqrt{3}}{2}\cos(x)=\frac{3}{2}\sin(x)\implies \tan(x)=\frac{\sqrt{3}}{3}</cmath> | ||
+ | |||
+ | The only value of <math>x</math> that satisfies <math>60+x<180</math>(because <math>60+x</math> is an angle of the triangle) is <math>x=30^{\circ}</math>. We seek to find <math>\angle ACB</math>, which as we found before is <math>60+x</math>, which is <math>90</math>. The answer is <math>90, \text{or} \textbf{(C)}</math> | ||
-vsamc | -vsamc |
Revision as of 02:42, 17 January 2022
Contents
Problem
Triangle has . Let and be on and , respectively, such that . Let be the intersection of segments and , and suppose that is equilateral. What is ?
Solution 1
Let .
Since and the angle between the hypotenuse and the shorter side is , triangle is a triangle, so .
Solution 2(Trig and Angle Chasing)
Let Let Because is equilateral, we get , so
Because is equilateral, we get .
Angles and are vertical, so .
By triangle , we have , and because of line , we have .
Because Of line , we have , and by line , we have .
By quadrilateral , we have .
By the Law of Sines:
By the sine addition formula():
Because cosine is an even function, and sine is an odd function, we have
We know that , and , hence
The only value of that satisfies (because is an angle of the triangle) is . We seek to find , which as we found before is , which is . The answer is
-vsamc
Solution 3 (Similar Triangles)
Notice that and . Hence, triangle AEB is similar to triangle CFA. Since , , as triangle CFE is equilateral. Therefore, , and since , . Thus, the measure of equals to -HarryW
Video Solution by the Beauty of Math
https://youtu.be/kU70k1-ONgM?t=785
See also
2010 AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by Problem 13 |
Followed by Problem 15 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
2010 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 7 |
Followed by Problem 9 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.