Difference between revisions of "1989 AIME Problems/Problem 7"
Fatty fish (talk | contribs) m (→Solution) |
|||
Line 12: | Line 12: | ||
{{AIME box|year=1989|num-b=6|num-a=8}} | {{AIME box|year=1989|num-b=6|num-a=8}} | ||
{{MAA Notice}} | {{MAA Notice}} | ||
+ | [[Category: Introductory Algebra Problems]] |
Revision as of 12:37, 15 January 2022
Problem
If the integer is added to each of the numbers
,
, and
, one obtains the squares of three consecutive terms of an arithmetic series. Find
.
Solution
Call the terms of the arithmetic progression , making their squares
.
We know that and
, and subtracting these two we get
(1). Similarly, using
and
, subtraction yields
(2).
Subtracting the first equation from the second, we get , so
. Substituting backwards yields that
and
.
See also
1989 AIME (Problems • Answer Key • Resources) | ||
Preceded by Problem 6 |
Followed by Problem 8 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.