Difference between revisions of "2013 AIME I Problems/Problem 9"
Hashtagmath (talk | contribs) |
(→Solution 1) |
||
Line 24: | Line 24: | ||
== Solution 1 == | == Solution 1 == | ||
+ | Let <math>M</math> and <math>N</math> be the points on <math>\overline{AB}</math> and <math>\overline{AC}</math>, respectively, where the paper is folded. Let <math>D</math> be the point on <math>\overline{BC}</math> where the folded <math>A</math> touches it. | ||
+ | <asy> import cse5; size(8cm); pen tpen = defaultpen + 1.337; | ||
+ | real a = 39/5.0; real b = 39/7.0; | ||
+ | pair B = MP("B", (0,0), dir(200)); pair A = MP("A", 12*dir(60), dir(90)); pair C = MP("C", (12,0), dir(-20)); pair D = MP("D", (9,0), dir(-80)); pair Y = MP("Y", midpoint(A--D), dir(-50)); pair M = MP("M", extension(A,B,Y,Y+(dir(90)*(D-A))), dir(180)); pair N = MP("N", extension(A,C,M,Y), dir(20)); pair F = MP("F", foot(A,B,C), dir(-90)); pair X = MP("X", extension(A,F,M,N), dir(-120)); | ||
+ | draw(B--A--C--cycle, tpen); draw(M--N^^F--A--D); draw(rightanglemark(D,F,A,15)); draw(rightanglemark(A,Y,M,15)); MA("\theta",F,A,D,1.8); | ||
+ | </asy> | ||
+ | We have <math>AF=6\sqrt{3}</math> and <math>FD=3</math>, so <math>AD=3\sqrt{13}</math>. Denote <math>\angle DAF = \theta </math>; we get <math>\cos\theta = 2\sqrt{3}/\sqrt{13}</math>. | ||
+ | |||
+ | In triangle <math>AXY</math>, <math>AY=\tfrac 12 AD = \tfrac 32 \sqrt{13}</math>, so <math>AX=AY\sec\theta =\tfrac{13}{4}\sqrt{3}</math>. | ||
+ | |||
+ | In triangle <math>AMX</math>, we get <math>\angle AMX=60^\circ-\theta</math> and then use sine-law to get <math>MX=\tfrac 12 AX\csc(60^\circ-\theta)</math>; similarly, from triangle <math>ANX</math> we get <math>NX=\tfrac 12 AX\csc(60^\circ+\theta)</math>. Thus <cmath>MN=\tfrac 12 AX(\csc(60^\circ-\theta) +\csc(60^\circ+\theta)).</cmath> Since <math>\sin(60^\circ\pm \theta) = \tfrac 12 (\sqrt{3}\cos\theta \pm \sin\theta)</math>, we get | ||
+ | <cmath>\begin{align*} | ||
+ | \csc(60^\circ-\theta) +\csc(60^\circ+\theta) &= \frac{\sqrt{3}\cos\theta}{\cos^2\theta - \tfrac 14} = \frac{24 \cdot \sqrt{13}}{35} | ||
+ | \end{align*}</cmath> | ||
+ | Then <cmath>MN = \frac 12 AX \cdot \frac{24 \cdot \sqrt{13}}{35} = \frac{39\sqrt{39}}{35}</cmath> | ||
+ | |||
+ | The answer is <math>39 + 39 + 35 = \boxed{113}</math>. | ||
+ | |||
+ | == Solution 2 == | ||
Let <math>P</math> and <math>Q</math> be the points on <math>\overline{AB}</math> and <math>\overline{AC}</math>, respectively, where the paper is folded. | Let <math>P</math> and <math>Q</math> be the points on <math>\overline{AB}</math> and <math>\overline{AC}</math>, respectively, where the paper is folded. | ||
Revision as of 10:40, 3 January 2022
Contents
Problem
A paper equilateral triangle has side length
. The paper triangle is folded so that vertex
touches a point on side
a distance
from point
. The length of the line segment along which the triangle is folded can be written as
, where
,
, and
are positive integers,
and
are relatively prime, and
is not divisible by the square of any prime. Find
.
Solution 1
Let and
be the points on
and
, respectively, where the paper is folded. Let
be the point on
where the folded
touches it.
We have
and
, so
. Denote
; we get
.
In triangle ,
, so
.
In triangle , we get
and then use sine-law to get
; similarly, from triangle
we get
. Thus
Since
, we get
Then
The answer is .
Solution 2
Let and
be the points on
and
, respectively, where the paper is folded.
Let be the point on
where the folded
touches it.
Let ,
, and
be the lengths
,
, and
, respectively.
We have ,
,
,
,
, and
.
Using the Law of Cosines on :
Using the Law of Cosines on :
Using the Law of Cosines on :
The solution is .
Solution 2
Proceed with the same labeling as in Solution 1.
Therefore, .
Similarly, .
Now, and
are similar triangles, so
.
Solving this system of equations yields and
.
Using the Law of Cosines on :
The solution is .
Note
Once you find and
, you can scale down the triangle by a factor of
so that all sides are integers. Applying Law of cosines becomes easier, you just need to remember to scale back up.
Solution 3 (Coordinate Bash)
We let the original position of be
, and the position of
after folding be
. Also, we put the triangle on the coordinate plane such that
,
,
, and
.
Note that since is reflected over the fold line to
, the fold line is the perpendicular bisector of
. We know
and
. The midpoint of
(which is a point on the fold line) is
. Also, the slope of
is
, so the slope of the fold line (which is perpendicular), is the negative of the reciprocal of the slope of
, or
. Then, using point slope form, the equation of the fold line is
Note that the equations of lines
and
are
and
, respectively. We will first find the intersection of
and the fold line by substituting for
:
Therefore, the point of intersection is
. Now, lets find the intersection with
. Substituting for
yields
Therefore, the point of intersection is
. Now, we just need to use the distance formula to find the distance between
and
.
The number 39 is in all of the terms, so let's factor it out:
Therefore, our answer is
, and we are done.
Solution by nosaj.
Video Solution
https://www.youtube.com/watch?v=581ZtcQFCaE&t=98s
See also
2013 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 8 |
Followed by Problem 10 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.