Difference between revisions of "2005 AMC 12B Problems/Problem 12"
Hashtagmath (talk | contribs) |
Dairyqueenxd (talk | contribs) (→Problem) |
||
Line 3: | Line 3: | ||
The [[quadratic equation]] <math>x^2+mx+n</math> has roots twice those of <math>x^2+px+m</math>, and none of <math>m,n,</math> and <math>p</math> is zero. What is the value of <math>n/p</math>? | The [[quadratic equation]] <math>x^2+mx+n</math> has roots twice those of <math>x^2+px+m</math>, and none of <math>m,n,</math> and <math>p</math> is zero. What is the value of <math>n/p</math>? | ||
− | <math>\ | + | <math>\textbf{(A) }\ {{{1}}} \qquad \textbf{(B) }\ {{{2}}} \qquad \textbf{(C) }\ {{{4}}} \qquad \textbf{(D) }\ {{{8}}} \qquad \textbf{(E) }\ {{{16}}}</math> |
==Solutions== | ==Solutions== |
Revision as of 07:35, 16 December 2021
- The following problem is from both the 2005 AMC 12B #12 and 2005 AMC 10B #16, so both problems redirect to this page.
Problem
The quadratic equation has roots twice those of , and none of and is zero. What is the value of ?
Solutions
Solution 1
Let have roots and . Then
so and . Also, has roots and , so
and and . Thus .
Indeed, consider the quadratics .
Solution 2
If the roots of are and and the roots of are and , then using Vieta's formulas, Therefore, substituting the second equation into the first equation gives and substituting the fourth equation into the third equation gives Therefore, , so
Video Solution
https://youtu.be/3dfbWzOfJAI?t=1023
~ pi_is_3.14
See also
2005 AMC 10B (Problems • Answer Key • Resources) | ||
Preceded by Problem 15 |
Followed by Problem 17 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
2005 AMC 12B (Problems • Answer Key • Resources) | |
Preceded by Problem 11 |
Followed by Problem 13 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.