Difference between revisions of "2019 AIME II Problems/Problem 15"

(Solution)
Line 2: Line 2:
 
In acute triangle <math>ABC</math> points <math>P</math> and <math>Q</math> are the feet of the perpendiculars from <math>C</math> to <math>\overline{AB}</math> and from <math>B</math> to <math>\overline{AC}</math>, respectively. Line <math>PQ</math> intersects the circumcircle of <math>\triangle ABC</math> in two distinct points, <math>X</math> and <math>Y</math>. Suppose <math>XP=10</math>, <math>PQ=25</math>, and <math>QY=15</math>. The value of <math>AB\cdot AC</math> can be written in the form <math>m\sqrt n</math> where <math>m</math> and <math>n</math> are positive integers, and <math>n</math> is not divisible by the square of any prime. Find <math>m+n</math>.
 
In acute triangle <math>ABC</math> points <math>P</math> and <math>Q</math> are the feet of the perpendiculars from <math>C</math> to <math>\overline{AB}</math> and from <math>B</math> to <math>\overline{AC}</math>, respectively. Line <math>PQ</math> intersects the circumcircle of <math>\triangle ABC</math> in two distinct points, <math>X</math> and <math>Y</math>. Suppose <math>XP=10</math>, <math>PQ=25</math>, and <math>QY=15</math>. The value of <math>AB\cdot AC</math> can be written in the form <math>m\sqrt n</math> where <math>m</math> and <math>n</math> are positive integers, and <math>n</math> is not divisible by the square of any prime. Find <math>m+n</math>.
  
==Solution==
+
==Diagram==
===Solution 1===
+
<asy>
 +
size(200);
 +
defaultpen(linewidth(0.4)+fontsize(10));
 +
pen s = linewidth(0.8)+fontsize(8);
 +
 
 +
pair A,B,C,P,Q,X,Y,O;
 +
O = origin;
 +
real theta = 32;
 +
A = dir(180+theta);
 +
B = dir(-theta);
 +
C = dir(75);
 +
P = foot(B,A,C);
 +
Q = foot(C,A,B);
 +
path c = circumcircle(A,B,C);
 +
X = IP(c, Q--(2*P-Q));
 +
Y = IP(c, P--(2*Q-P));
 +
draw(A--B--C--A, black+0.8);
 +
draw(c^^X--Y^^B--P^^C--Q);
 +
dot("$A$", A, SW);
 +
dot("$B$", B, SE);
 +
dot("$C$", C, N);
 +
dot("$P$", P, W);
 +
dot("$Q$", Q, SW);
 +
dot("$X$", X, NW);
 +
dot("$Y$", Y, SE);
 +
label("$25$", P--Q, SW);
 +
label("$15$", X--P, SW);
 +
label("$10$", Q--Y, SW);
 +
</asy>
 +
 
 +
==Solution 1==
 +
 
 
First we have <math>a\cos A=PQ=25</math>, and <math>(a\cos A)(c\cos C)=(a\cos C)(c\cos A)=AP\cdot PB=10(25+15)=400</math> by PoP. Similarly, <math>(a\cos A)(b\cos B)=15(10+25)=525,</math> and dividing these each by <math>a\cos A</math> gives
 
First we have <math>a\cos A=PQ=25</math>, and <math>(a\cos A)(c\cos C)=(a\cos C)(c\cos A)=AP\cdot PB=10(25+15)=400</math> by PoP. Similarly, <math>(a\cos A)(b\cos B)=15(10+25)=525,</math> and dividing these each by <math>a\cos A</math> gives
 
<math>b\cos B=21,c\cos C=16</math>.  
 
<math>b\cos B=21,c\cos C=16</math>.  
Line 21: Line 52:
 
༺\\ crazyeyemoody9❂7 //༻
 
༺\\ crazyeyemoody9❂7 //༻
  
===Solution 2===
+
==Solution 2==
 +
 
 
Let <math>AP=a, AQ=b, \cos\angle A = k</math>
 
Let <math>AP=a, AQ=b, \cos\angle A = k</math>
  
Line 81: Line 113:
 
By SpecialBeing2017
 
By SpecialBeing2017
  
===Solution 3===
+
==Solution 3==
  
 
Let <math>\overline{AP}=a, \overline{PB} = b, \overline{AQ} = c</math> and <math>\overline{QC} = d</math>
 
Let <math>\overline{AP}=a, \overline{PB} = b, \overline{AQ} = c</math> and <math>\overline{QC} = d</math>

Revision as of 22:34, 7 December 2021

Problem

In acute triangle $ABC$ points $P$ and $Q$ are the feet of the perpendiculars from $C$ to $\overline{AB}$ and from $B$ to $\overline{AC}$, respectively. Line $PQ$ intersects the circumcircle of $\triangle ABC$ in two distinct points, $X$ and $Y$. Suppose $XP=10$, $PQ=25$, and $QY=15$. The value of $AB\cdot AC$ can be written in the form $m\sqrt n$ where $m$ and $n$ are positive integers, and $n$ is not divisible by the square of any prime. Find $m+n$.

Diagram

[asy] size(200); defaultpen(linewidth(0.4)+fontsize(10)); pen s = linewidth(0.8)+fontsize(8);  pair A,B,C,P,Q,X,Y,O; O = origin; real theta = 32; A = dir(180+theta); B = dir(-theta); C = dir(75); P = foot(B,A,C); Q = foot(C,A,B); path c = circumcircle(A,B,C); X = IP(c, Q--(2*P-Q)); Y = IP(c, P--(2*Q-P)); draw(A--B--C--A, black+0.8); draw(c^^X--Y^^B--P^^C--Q); dot("$A$", A, SW); dot("$B$", B, SE); dot("$C$", C, N); dot("$P$", P, W); dot("$Q$", Q, SW); dot("$X$", X, NW); dot("$Y$", Y, SE); label("$25$", P--Q, SW); label("$15$", X--P, SW); label("$10$", Q--Y, SW); [/asy]

Solution 1

First we have $a\cos A=PQ=25$, and $(a\cos A)(c\cos C)=(a\cos C)(c\cos A)=AP\cdot PB=10(25+15)=400$ by PoP. Similarly, $(a\cos A)(b\cos B)=15(10+25)=525,$ and dividing these each by $a\cos A$ gives $b\cos B=21,c\cos C=16$.


It is known that the sides of the orthic triangle are $a\cos A,b\cos B,c\cos C$, and its angles are $\pi-2A$,$\pi-2B$, and $\pi-2C$. We thus have the three sides of the orthic triangle now. Letting $D$ be the foot of the altitude from $A$, we have, in $\triangle DPQ$, \[\cos P,\cos Q=\frac{21^2+25^2-16^2}{2\cdot 21\cdot 25},\frac{16^2+25^2-21^2}{2\cdot 16\cdot 25}=27/35,11/20.\] \[\Rightarrow \cos B=\cos\biggl(\frac{\pi-P}{2}\biggr)=\sin\frac{P}{2}=\sqrt{4/35},\] similarly, we get \[\cos C=\cos\biggl(\frac{\pi-Q}{2}\biggr)=\sin\frac{Q}{2}=\sqrt{9/40}.\] To finish, \[bc= \frac{(b\cos B)(c\cos C)}{\cos B\cos C}=\frac{16\cdot 21}{(2/\sqrt{35})(3/\sqrt{40})}\] \[=56\sqrt{1400}=560\sqrt{14}.\]

The requested sum is $\boxed{574}$.

༺\\ crazyeyemoody9❂7 //༻

Solution 2

Let $AP=a, AQ=b, \cos\angle A = k$

Therefore $AB= \frac{b}{k} , AC= \frac{a}{k}$

By power of point, we have $AP\cdot BP=XP\cdot YP , AQ\cdot CQ=YQ\cdot XQ$ Which are simplified to

$400= \frac{ab}{k} - a^2$

$525= \frac{ab}{k} - b^2$

Or

$a^2= \frac{ab}{k} - 400$

$b^2= \frac{ab}{k} - 525$

(1)

Or

$k= \frac{ab}{a^2+400} = \frac{ab}{b^2+525}$

Let $u=a^2+400=b^2+525$ Then, $a=\sqrt{u-400},b=\sqrt{u-525},k=\frac{\sqrt{(u-400)(u-525)}}{u}$


In triangle $APQ$, by law of cosine

$25^2= a^2 + b^2 - 2abk$

Pluging (1)

$625=  \frac{ab}{k} - 400 + \frac{ab}{k} - 525 -2abk$

Or

$\frac{ab}{k} - abk =775$

Substitute everything by $u$

$u- \frac{(u-400)(u-525)}{u} =775$

The quadratic term is cancelled out after simplified

Which gives $u=1400$

Plug back in, $a= \sqrt{1000} , b=\sqrt{875}$

Then

$AB\cdot AC= \frac{a}{k} \frac{b}{k} = \frac{ab}{\frac{ab}{u} \cdot\frac{ab}{u} } = \frac{u^2}{ab} = \frac{1400 \cdot 1400}{ \sqrt{ 1000\cdot 875 }} = 560 \sqrt{14}$

So the final answer is $560 + 14 = \boxed{574}$

By SpecialBeing2017

Solution 3

Let $\overline{AP}=a, \overline{PB} = b, \overline{AQ} = c$ and $\overline{QC} = d$

By power of point, we have $\overline{AP}\cdot \overline{PB}=\overline{XP}\cdot \overline{YP}$ and $\overline{AQ}\cdot \overline{QC}=\overline{YQ}\cdot \overline{XQ}$

Therefore, substituting in the values:

$ab = 400$

$cd = 525$

Notice that quadrilateral $BPQC$ is cyclic.

From this fact, we can deduce that $\angle PQA= \angle B$ and $\angle QPA = \angle C$

Therefore $\triangle ABC$ is similar to $\triangle AQP$.

Therefore: $\frac{a}{c+d}=\frac{c}{a+b} \implies a^2 + ab = c^2 +cd \implies a^2 + 400 = c^2 + 525 \implies \bf{a^2 = c^2 + 125}$

Now using Law of Cosines on $\triangle AQP$ we get:

$625 = a^2 + c^2 - 2ac\cos{A}$

Notice $\cos{A} = \frac{c}{a+b}$

Substituting and Simplifying:

$625 = a^2 + c^2 - 2ac\frac{c}{a+b}$

$625 = a^2 + c^2 - 2ac\frac{c}{a+\frac{400}{a}}$

$625 = c^2 + 125 + c^2 - 2\frac{(ac)^2}{a^2+400}$

$625 = c^2 + 125 + c^2 - 2\frac{c^2(c^2+125)}{c^2+125+400}$

Now we solve for $c$ using regular algebra which actually turns out to be very easy.

We get $c = 5\sqrt{35}$ and from the above relations between the variables we quickly determine $d = 3\sqrt{35}$, $a = 10\sqrt{10}$ and $b = 4\sqrt{10}$

Therefore $AB\cdot AC = (a+b)\cdot(c+d) = 560\sqrt{14}$

So the answer is $560 + 14 = \boxed{574}$

By asr41

Solution 4 (Clean)

This solution is directly based of @CantonMathGuy's solution. We start off with a key claim.


Claim. $XB \parallel AC$ and $YC \parallel AB$.

Proof. Let $H_p$ and $H_q$ denote the reflections of the orthocenter over points $P$ and $Q$, respectively. Since $H_p H_q \parallel XY$ and $H_p H_q = 2 PQ = XP + PQ + QY = XY$, we have that $H_p X Y H_q$ is a rectangle. Then, since $\angle XYH_q = 90^\circ$ we obtain $\angle XBH_q = 90^\circ$ (which directly follows from $XBYH_q$ being cyclic); hence $\angle XBQ = \angle AQB$, or $XB \parallel AQ \implies XB \parallel AC$. Similarly, we can obtain $YC \parallel AB$.


A direct result of this claim is that $\triangle BPX \sim \triangle APQ \sim \triangle CYQ$. Thus, we can set $AP = 5k$ and $BP = 2k$, then applying Power of a Point on $P$ we get $10 \cdot 40 = 10k^2 \implies k = 2\sqrt{10} \implies AB = 14 \sqrt{10}$. Also, we can set $AQ = 5l$ and $CQ = 3l$ and once again applying Power of a Point (but this time to $Q$) we get $15 \cdot 35 = 15l^2 \implies l = \sqrt{35} \implies AC = 8 \sqrt{35}$. Hence, $AB \cdot AC = 112 \sqrt{350} = 112 \cdot 5 \sqrt{14} = 560 \sqrt{14}$ and the answer is $560 + 14 = \boxed{574}$. ~rocketsri


See Also

2019 AIME II (ProblemsAnswer KeyResources)
Preceded by
Problem 14
Followed by
Last Question
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png