Difference between revisions of "2018 AMC 10B Problems/Problem 1"

m (Solution 1)
(Blanked the page)
(Tag: Blanking)
Line 1: Line 1:
{{duplicate|[[2018 AMC 12B Problems|2018 AMC 12B #1]] and [[2018 AMC 10B Problems|2018 AMC 10B #1]]}}
 
  
==Problem==
 
Kate bakes a <math>20</math>-inch by <math>18</math>-inch pan of cornbread. The cornbread is cut into pieces that measure <math>2</math> inches by <math>2</math> inches. How many pieces of cornbread does the pan contain?
 
 
<math>\textbf{(A) } 90 \qquad \textbf{(B) } 100 \qquad \textbf{(C) } 180 \qquad \textbf{(D) } 200 \qquad \textbf{(E) } 360</math>
 
 
== Solution 1 ==
 
 
The area of the pan is <math>20\cdot18=360</math>. Since the area of each piece is <math>2\cdot2=4</math>, there are <math>\frac{360}{4} = \boxed{\textbf{(A) } 90}</math> pieces.
 
 
== Solution 2 ==
 
 
By dividing each of the dimensions by <math>2</math>, we get a <math>10\times9</math> grid that makes <math>\boxed{\textbf{(A) } 90}</math> pieces.
 
 
==Video Solution==
 
https://youtu.be/o5MUHOmF1zo
 
 
~savannahsolver
 
 
==See Also==
 
 
{{AMC10 box|year=2018|ab=B|before=First Problem|num-a=2}}
 
{{AMC12 box|year=2018|ab=B|before=First Problem|num-a=2}}
 
{{MAA Notice}}
 

Revision as of 22:42, 6 December 2021