Difference between revisions of "AMC 10 2021 (Mock) Problems"

(Problem 1)
(Problem 1)
Line 5: Line 5:
  
 
<math>\mathrm{(A) \ } 0\qquad \mathrm{(B) \ } 2020\qquad \mathrm{(C) \ } 2021\qquad \mathrm{(D) \ } 2022\qquad \mathrm{(E) \ } 6063</math>
 
<math>\mathrm{(A) \ } 0\qquad \mathrm{(B) \ } 2020\qquad \mathrm{(C) \ } 2021\qquad \mathrm{(D) \ } 2022\qquad \mathrm{(E) \ } 6063</math>
 +
 +
 +
==Problem 2==
 +
 +
A bag of marbles consists of <math>4</math> red marbles and <math>3</math> blue marbles. Each of these <math>7</math> marbles are pulled out one at a time. What is the probability that the <math>5th</math> marble pulled out is red?
 +
 +
 +
<math>\mathrm{(A) \ } \frac{1}{5}\qquad \mathrm{(B) \ } \frac{3}{7}\qquad \mathrm{(C) \ } \frac{1}{2}\qquad \mathrm{(D) \ } \frac{4}{7}\qquad \mathrm{(E) \ } \frac{4}{5}</math>

Revision as of 11:20, 29 November 2021

Problem 1

Given that $A + B - C = 2020, B + C - A = 2021,$ and $A + C - B = 2022,$ what is the value of $A + B + C - 2020 - 2021 - 2022$?


$\mathrm{(A) \ } 0\qquad \mathrm{(B) \ } 2020\qquad \mathrm{(C) \ } 2021\qquad \mathrm{(D) \ } 2022\qquad \mathrm{(E) \ } 6063$


Problem 2

A bag of marbles consists of $4$ red marbles and $3$ blue marbles. Each of these $7$ marbles are pulled out one at a time. What is the probability that the $5th$ marble pulled out is red?


$\mathrm{(A) \ } \frac{1}{5}\qquad \mathrm{(B) \ } \frac{3}{7}\qquad \mathrm{(C) \ } \frac{1}{2}\qquad \mathrm{(D) \ } \frac{4}{7}\qquad \mathrm{(E) \ } \frac{4}{5}$