Difference between revisions of "2021 Fall AMC 12B Problems/Problem 24"
Kevinmathz (talk | contribs) m |
Kevinmathz (talk | contribs) (→Solution) |
||
Line 2: | Line 2: | ||
<b>Claim:</b> <math>\triangle ADC \sim \triangle ABE.</math> | <b>Claim:</b> <math>\triangle ADC \sim \triangle ABE.</math> | ||
+ | |||
<b>Proof:</b> Note that <math>\angle CAD = \angle CAE = \angle EAB</math> and <math>\angle DCA = \angle BCA = \angle BEA</math> meaning that our claim is true by AA similarity. | <b>Proof:</b> Note that <math>\angle CAD = \angle CAE = \angle EAB</math> and <math>\angle DCA = \angle BCA = \angle BEA</math> meaning that our claim is true by AA similarity. | ||
Revision as of 17:52, 25 November 2021
Solution
Claim:
Proof: Note that and meaning that our claim is true by AA similarity.
Because of this similarity, we have that by Power of a Point. Thus,
Now, note that and plug into Law of Cosines to find the angle's cosine:
So, we observe that we can use Law of Cosines again to find :
- kevinmathz