Difference between revisions of "2021 Fall AMC 12B Problems/Problem 13"
(Created page with "==Problem== Let <math>c = \frac{2\pi}{11}.</math> What is the value of <cmath>\frac{\sin 3c \cdot \sin 6c \cdot \sin 9c \cdot \sin 12c \cdot \sin 15c}{\sin c \cdot \sin 2c \cd...") |
m (→Solution 1) |
||
Line 11: | Line 11: | ||
− | Since <math>\sin(x+2\pi)=\sin(x),</math> <math>\sin(2\pi-x)=\sin(-x),</math> and <math>\sin(-x)=-x,</math> we get | + | Since <math>\sin(x+2\pi)=\sin(x),</math> <math>\sin(2\pi-x)=\sin(-x),</math> and <math>\sin(-x)=-sin(x),</math> we get |
<cmath>\frac{\sin \frac{6\pi}{11} \cdot \sin \frac{12\pi}{11} \cdot \sin \frac{18\pi}{11} \cdot \sin \frac{24\pi}{11} \cdot \sin \frac{30\pi}{11}}{\sin \frac{2\pi}{11} \cdot \sin \frac{4\pi}{11} \cdot \sin \frac{6\pi}{11} \cdot \sin \frac{8\pi}{11} \cdot \sin \frac{10\pi}{11}}=\frac{\sin \frac{6\pi}{11} \cdot \sin \frac{-10\pi}{11} \cdot \sin \frac{-4\pi}{11} \cdot \sin \frac{2\pi}{11} \cdot \sin \frac{8\pi}{11}}{\sin \frac{2\pi}{11} \cdot \sin \frac{4\pi}{11} \cdot \sin \frac{6\pi}{11} \cdot \sin \frac{8\pi}{11} \cdot \sin \frac{10\pi}{11}}=\boxed{\textbf{(E)}\ 1}.</cmath> | <cmath>\frac{\sin \frac{6\pi}{11} \cdot \sin \frac{12\pi}{11} \cdot \sin \frac{18\pi}{11} \cdot \sin \frac{24\pi}{11} \cdot \sin \frac{30\pi}{11}}{\sin \frac{2\pi}{11} \cdot \sin \frac{4\pi}{11} \cdot \sin \frac{6\pi}{11} \cdot \sin \frac{8\pi}{11} \cdot \sin \frac{10\pi}{11}}=\frac{\sin \frac{6\pi}{11} \cdot \sin \frac{-10\pi}{11} \cdot \sin \frac{-4\pi}{11} \cdot \sin \frac{2\pi}{11} \cdot \sin \frac{8\pi}{11}}{\sin \frac{2\pi}{11} \cdot \sin \frac{4\pi}{11} \cdot \sin \frac{6\pi}{11} \cdot \sin \frac{8\pi}{11} \cdot \sin \frac{10\pi}{11}}=\boxed{\textbf{(E)}\ 1}.</cmath> | ||
Revision as of 16:57, 25 November 2021
Problem
Let What is the value of
Solution 1
Plugging in , we get
Since and we get
~kingofpineapplz
See Also
2021 Fall AMC 12B (Problems • Answer Key • Resources) | |
Preceded by Problem 11 |
Followed by Problem 13 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.