Difference between revisions of "2021 Fall AMC 12B Problems/Problem 12"
Lopkiloinm (talk | contribs) (→Solution 1) |
|||
Line 13: | Line 13: | ||
<cmath>f(768)=(1+\frac{1}{2}+\ldots+\frac{1}{256})(1+\frac{1}{3})=\frac{511}{192}</cmath> | <cmath>f(768)=(1+\frac{1}{2}+\ldots+\frac{1}{256})(1+\frac{1}{3})=\frac{511}{192}</cmath> | ||
<cmath>f(384)=(1+\frac{1}{2}+\ldots+\frac{1}{128})(1+\frac{1}{3})=\frac{510}{192}</cmath> | <cmath>f(384)=(1+\frac{1}{2}+\ldots+\frac{1}{128})(1+\frac{1}{3})=\frac{510}{192}</cmath> | ||
− | so the difference is <math>\boxed{(B) \frac{1}{192}}</math> | + | so the difference is <math>\boxed{\textbf{(B)}\ \frac{1}{192}}</math> |
~lopkiloinm | ~lopkiloinm | ||
Revision as of 01:20, 24 November 2021
Problem
For a positive integer, let be the quotient obtained when the sum of all positive divisors of n is divided by n. For example, What is
Solution 1
The prime factorization of is and the prime factorization of is so so the difference is ~lopkiloinm
See Also
2021 Fall AMC 12B (Problems • Answer Key • Resources) | |
Preceded by Problem 11 |
Followed by Problem 13 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.