Difference between revisions of "2021 Fall AMC 12B Problems/Problem 7"

(Solution 1 (Bash))
(Solution 1 (Bash))
Line 1: Line 1:
 +
==Problem==
 +
Which of the following conditions is sufficient to guarantee that integers <math>x</math>, <math>y</math>, and <math>z</math> satisfy the equation
 +
<cmath>x(x-y)+y(y-z)+z(z-x) = 1?</cmath>
 +
 +
<math>\textbf{(A)} \: x>y</math> and <math>y=z</math>
 +
 +
<math>\textbf{(B)} \: x=y-1</math> and <math>y=z-1</math>
 +
 +
<math>\textbf{(C)} \: x=z+1</math> and <math>y=x+1</math>
 +
 +
<math>\textbf{(D)} \: x=z</math> and <math>y-1=x</math>
 +
 +
<math>\textbf{(E)} \: x+y+z=1</math>
 +
 +
 
==Solution 1 (Bash) ==
 
==Solution 1 (Bash) ==
  

Revision as of 21:57, 23 November 2021

Problem

Which of the following conditions is sufficient to guarantee that integers $x$, $y$, and $z$ satisfy the equation \[x(x-y)+y(y-z)+z(z-x) = 1?\]

$\textbf{(A)} \: x>y$ and $y=z$

$\textbf{(B)} \: x=y-1$ and $y=z-1$

$\textbf{(C)} \: x=z+1$ and $y=x+1$

$\textbf{(D)} \: x=z$ and $y-1=x$

$\textbf{(E)} \: x+y+z=1$


Solution 1 (Bash)

Just plug in all these options one by one, and one sees that all but $D$ fails to satisfy the equation.

For $D$, substitute $z=x$ and $y=x+1$:

$LHS=x(x-(x+1))+(x+1)(x+1-x)+x(x-x)=(-x)+(x+1)=1=RHS$

Hence the answer is $\boxed{\textbf{(D)}}.$

~Wilhelm Z