Difference between revisions of "2021 Fall AMC 10A Problems/Problem 15"

Line 9: Line 9:
  
 
- kante314
 
- kante314
 +
==See Also==
 +
{{AMC10 box|year=2021 Fall|ab=A|num-b=14|num-a=16}}
 +
{{MAA Notice}}

Revision as of 16:40, 23 November 2021

Isosceles triangle $ABC$ has $AB = AC = 3\sqrt6$, and a circle with radius $5\sqrt2$ is tangent to line $AB$ at $B$ and to line $AC$ at $C$. What is the area of the circle that passes through vertices $A$, $B$, and $C?$

$\textbf{(A) }24\pi\qquad\textbf{(B) }25\pi\qquad\textbf{(C) }26\pi\qquad\textbf{(D) }27\pi\qquad\textbf{(E) }28\pi$

Solution 1

Let the center of the first circle be $O.$ By Pythagorean Theorem, \[AO=\sqrt{(3\sqrt{6})^2+(5\sqrt{2})^2}=2 \sqrt{26}\] Now, notice that since $\angle ABO$ is $90$ degrees, so arc $AO$ is $180$ degrees and $AO$ is the diameter. Thus, the radius is $\sqrt{26},$ so the area is $\boxed{26\pi}.$

- kante314

See Also

2021 Fall AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 14
Followed by
Problem 16
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png