Difference between revisions of "2021 Fall AMC 10A Problems/Problem 16"
(Created page with "The graph of <math>f(x) = |\lfloor x \rfloor| - |\lfloor 1 - x \rfloor|</math> is symmetric about which of the following? (Here <math>\lfloor x \rfloor</math> is the greatest...") |
|||
Line 3: | Line 3: | ||
<math>\textbf{(A) }</math> the <math>y</math>-axis <math>\qquad \textbf{(B) }</math> the line <math>x = 1</math> <math>\qquad \textbf{(C) }</math> the origin <math>\qquad | <math>\textbf{(A) }</math> the <math>y</math>-axis <math>\qquad \textbf{(B) }</math> the line <math>x = 1</math> <math>\qquad \textbf{(C) }</math> the origin <math>\qquad | ||
\textbf{(D) }</math> the point <math>\left(\dfrac12, 0\right)</math> <math>\qquad \textbf{(E) }</math> the point <math>(1,0)</math> | \textbf{(D) }</math> the point <math>\left(\dfrac12, 0\right)</math> <math>\qquad \textbf{(E) }</math> the point <math>(1,0)</math> | ||
+ | |||
+ | == Solution 1 == | ||
+ | Since <math>f(1-x)=|\lfloor 1-x \rfloor|-|\lfloor x \rfloor|=-f(x)</math>, <math>f(x)</math> is symmetric about the point <math>\left(\dfrac12, 0\right)</math> | ||
+ | <math>\box{\textbf{(D) } } \text{the point} \left(\dfrac12, 0\right)</math> |
Revision as of 12:06, 23 November 2021
The graph of is symmetric about which of the following? (Here is the greatest integer not exceeding .)
the -axis the line the origin the point the point
Solution 1
Since , is symmetric about the point $\box{\textbf{(D) } } \text{the point} \left(\dfrac12, 0\right)$ (Error compiling LaTeX. Unknown error_msg)