Difference between revisions of "2021 Fall AMC 10B Problems/Problem 19"
Ihatemath123 (talk | contribs) m |
Arcticturn (talk | contribs) (→Solution) |
||
Line 36: | Line 36: | ||
~ihatemath123 | ~ihatemath123 | ||
+ | |||
+ | ==Solution 2== | ||
==See Also== | ==See Also== | ||
{{AMC10 box|year=2021 Fall|ab=B|num-a=20|num-b=18}} | {{AMC10 box|year=2021 Fall|ab=B|num-a=20|num-b=18}} | ||
{{MAA Notice}} | {{MAA Notice}} |
Revision as of 10:55, 23 November 2021
Contents
Problem
Let be the positive integer , a -digit number where each digit is a . Let be the leading digit of the th root of . What is
Solution
For notation purposes, let be the number with digits, and let be the leading digit of . As an example, , because , and the first digit of that is .
Notice that for all numbers ; this is because , and dividing by does not affect the leading digit of a number. Similarly, In general, for positive integers and real numbers , it is true that Behind all this complex notation, all that we're really saying is that the first digit of something like has the same first digit as and .
The problem asks for
From our previous observation, we know that Therefore, . We can evaluate , the leading digit of , to be . Therefore, .
Similarly, we have Therefore, . We know , so .
Next, and , so .
We also have and , so .
Finally, and , so .
We have that .
~ihatemath123
Solution 2
See Also
2021 Fall AMC 10B (Problems • Answer Key • Resources) | ||
Preceded by Problem 18 |
Followed by Problem 20 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.