Difference between revisions of "2021 Fall AMC 10B Problems/Problem 19"
(→Problem) |
Ihatemath123 (talk | contribs) |
||
Line 1: | Line 1: | ||
== Problem == | == Problem == | ||
+ | Let <math>N</math> be the positive integer <math>7777\ldots777</math>, a <math>313</math>-digit number where each digit is a <math>7</math>. Let <math>f(r)</math> be the leading digit of the <math>r{ }</math>th root of <math>N</math>. What is<cmath>f(2) + f(3) + f(4) + f(5)+ f(6)?</cmath><math>(\textbf{A})\: 8\qquad(\textbf{B}) \: 9\qquad(\textbf{C}) \: 11\qquad(\textbf{D}) \: 22\qquad(\textbf{E}) \: 29</math> | ||
+ | == Solution == | ||
+ | For notation purposes, let <math>x</math> be the number <math>777 \ldots 777</math> with <math>313</math> digits, and let <math>B(n)</math> be the leading digit of <math>n</math>. As an example, <math>B(x) = 7</math>, because <math>x = 777 \ldots 777</math>, and the first digit of that is <math>7</math>. | ||
+ | |||
+ | Notice that <cmath>B(\sqrt{\frac{n}{100}}) = B(\sqrt{n})</cmath> for all numbers <math>n \geq 100</math>; this is because <math>\sqrt{\frac{n}{100}} = \frac{\sqrt{n}}{10}</math>, and dividing by <math>10</math> does not affect the leading digit of a number. Similarly, <cmath>B(\sqrt[3]{\frac{n}{1000}}) = B(\sqrt[3]{n}).</cmath> | ||
+ | In general, for positive integers <math>k</math> and real numbers <math>n > 10^{k}</math>, it is true that | ||
+ | <cmath>B(\sqrt[k]{\frac{n}{10^{k}}}) = B(\sqrt[k]{n}).</cmath> | ||
+ | Behind all this complex notation, all that we're really saying is that the first digit of something like <math>\sqrt[3]{123456789}</math> has the same first digit as <math>\sqrt[3]{123456.789}</math> and <math>\sqrt[3]{123.456789}</math>. | ||
+ | |||
+ | The problem asks for <math>B(\sqrt[2]{x}} + B(\sqrt[3]{x}} + B(\sqrt[4]{x}} + B(\sqrt[5]{x}} + B(\sqrt[6]{x}}</math>. From our previous observation, we know that | ||
+ | <cmath>B(\sqrt[2]{x}) = B(\sqrt[2]{\frac{x}{100}} = B(\sqrt[2]{\frac{x}{10,000}} = B(\sqrt[2]{\frac{x}{1,000,000}} = \ldots .</cmath> | ||
+ | Therefore, <math>B(\sqrt[2]{x}) = B(\sqrt[2]{7.777 \dots})</math>. We can evaluate <math>B(\sqrt[2]{7.777 \dots})</math>, the leading digit of <math>\sqrt[2]{7.777 \dots}</math>, to be <math>2</math>. Therefore, <math>f(2) = 2</math>. | ||
+ | |||
+ | Similarly, we have | ||
+ | <cmath>B(\sqrt[3]{x}) = B(\sqrt[3]{\frac{x}{1,000}} = B(\sqrt[3]{\frac{x}{1,000,000}} = B(\sqrt[3]{\frac{x}{1,000,000,000}} = \ldots .</cmath> | ||
+ | Therefore, <math>B(\sqrt[3]{x}) = B(\sqrt[3]{7.777 \ldots})</math>. We know <math>B(\sqrt[3]{7.777 \ldots}) = 1</math>, so <math>f(3) = 1</math>. | ||
+ | |||
+ | Similarly, <math>B(\sqrt[4]{x}) = B(\sqrt[4]{7.777 \ldots})</math> and <math>B(\sqrt[4]{7.777 \ldots}) = 1</math>, so <math>f(4) = 1</math>. We also have <math>B(\sqrt[5]{x}) = B(\sqrt[5]{777.777 \ldots})</math> and <math>B(\sqrt[5]{777.777 \ldots}) = 3</math>, so <math>f(5) = 3</math>. Finally, <math>B(\sqrt[6]{x}) = B(\sqrt[6]{7.777 \ldots})</math> and <math>B(\sqrt[4]{7.777 \ldots}) = 1</math>, so <math>f(6) = 1</math>. | ||
+ | |||
+ | We have that <math>f(2)+f(3)+f(4)+f(5)+f(6) = 2+1+1+3+1 = \boxed{\textbf{(A) } 8}</math>. | ||
+ | |||
+ | ~ihatemath123 | ||
==See Also== | ==See Also== | ||
{{AMC10 box|year=2021 Fall|ab=B|num-a=20|num-b=18}} | {{AMC10 box|year=2021 Fall|ab=B|num-a=20|num-b=18}} | ||
{{MAA Notice}} | {{MAA Notice}} |
Revision as of 10:19, 23 November 2021
Problem
Let be the positive integer , a -digit number where each digit is a . Let be the leading digit of the th root of . What is
Solution
For notation purposes, let be the number with digits, and let be the leading digit of . As an example, , because , and the first digit of that is .
Notice that for all numbers ; this is because , and dividing by does not affect the leading digit of a number. Similarly, In general, for positive integers and real numbers , it is true that Behind all this complex notation, all that we're really saying is that the first digit of something like has the same first digit as and .
The problem asks for $B(\sqrt[2]{x}} + B(\sqrt[3]{x}} + B(\sqrt[4]{x}} + B(\sqrt[5]{x}} + B(\sqrt[6]{x}}$ (Error compiling LaTeX. Unknown error_msg). From our previous observation, we know that Therefore, . We can evaluate , the leading digit of , to be . Therefore, .
Similarly, we have Therefore, . We know , so .
Similarly, and , so . We also have and , so . Finally, and , so .
We have that .
~ihatemath123
See Also
2021 Fall AMC 10B (Problems • Answer Key • Resources) | ||
Preceded by Problem 18 |
Followed by Problem 20 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.