Difference between revisions of "2021 Fall AMC 10B Problems/Problem 7"

(Created page with "==See Also== {{AMC10 box|year=2021 Fall|ab=B|num-a=8|num-b=6}} {{MAA Notice}}")
 
Line 1: Line 1:
 +
==Problem==
 +
 +
Call a fraction <math>\frac{a}{b}</math>, not necessarily in the simplest form special if <math>a</math> and <math>b</math> are positive integers whose sum is <math>15</math>. How many distinct integers can be written as the sum of two, not necessarily different, special fractions?
 +
 +
<math>\textbf{(A)}\ 9 \qquad\textbf{(B)}\  10 \qquad\textbf{(C)}\  11 \qquad\textbf{(D)}\
 +
12 \qquad\textbf{(E)}\ 13</math>
 +
 +
==Solution==
 +
 +
Listing out all special fractions, we get:
 +
<math>\{\frac{1}{14}, \frac{2}{13}, \frac{3}{12}, \frac{4}{11}, \frac{5}{10}, \frac{6}{9}, \frac{7}{8}, \frac{8}{7}, \frac{9}{6}, \frac{10}{5}, \frac{11}{4}, \frac{12}{3}, \frac{13}{2}, \frac{14}{1}}</math>
 +
 +
 
==See Also==
 
==See Also==
 
{{AMC10 box|year=2021 Fall|ab=B|num-a=8|num-b=6}}
 
{{AMC10 box|year=2021 Fall|ab=B|num-a=8|num-b=6}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 01:32, 23 November 2021

Problem

Call a fraction $\frac{a}{b}$, not necessarily in the simplest form special if $a$ and $b$ are positive integers whose sum is $15$. How many distinct integers can be written as the sum of two, not necessarily different, special fractions?

$\textbf{(A)}\ 9 \qquad\textbf{(B)}\  10 \qquad\textbf{(C)}\  11 \qquad\textbf{(D)}\  12 \qquad\textbf{(E)}\ 13$

Solution

Listing out all special fractions, we get: $\{\frac{1}{14}, \frac{2}{13}, \frac{3}{12}, \frac{4}{11}, \frac{5}{10}, \frac{6}{9}, \frac{7}{8}, \frac{8}{7}, \frac{9}{6}, \frac{10}{5}, \frac{11}{4}, \frac{12}{3}, \frac{13}{2}, \frac{14}{1}}$ (Error compiling LaTeX. Unknown error_msg)


See Also

2021 Fall AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 6
Followed by
Problem 8
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png