Difference between revisions of "2021 Fall AMC 10A Problems/Problem 25"
(→Solution 2.2 (Derivation-Rotated Conics)) |
MRENTHUSIASM (talk | contribs) |
||
Line 4: | Line 4: | ||
<math>\textbf{(A) } \frac{5}{16} \qquad\textbf{(B) } \frac{1}{2} \qquad\textbf{(C) } \frac{5}{8} \qquad\textbf{(D) } 1 \qquad\textbf{(E) } \frac{9}{8}</math> | <math>\textbf{(A) } \frac{5}{16} \qquad\textbf{(B) } \frac{1}{2} \qquad\textbf{(C) } \frac{5}{8} \qquad\textbf{(D) } 1 \qquad\textbf{(E) } \frac{9}{8}</math> | ||
− | == Solution 1== | + | == Solution 1 (Factored Form)== |
Let <math>r_1</math> and <math>r_2</math> be the roots of <math>\tilde{p}(x)</math>. Then, <math>\tilde{p}(x)=(x-r_1)(x-r_2)=x^2-(r_1+r_2)x+r_1r_2</math>. The solutions to <math>\tilde{p}(\tilde{p}(x))=0</math> is the union of the solutions to <math>x^2-(r_1+r_2)x+(r_1r_2-r_1)=0</math> and <math>x^2-(r_1+r_2)x+(r_1r_2-r_2)=0</math>. It follows that one of these two quadratics has one solution (a double root) and the other has two. WLOG, assume that the quadratic with one root is <math>x^2-(r_1+r_2)x+(r_1r_2-r_1)=0</math>. Then, the discriminant is <math>0</math>, so <math>(r_1+r_2)^2 = 4r_1r_2 - 4r_1</math>. Thus, <math>r_1-r_2=\pm 2\sqrt{-r_1}</math>, but for <math>x^2-(r_1+r_2)x+(r_1r_2-r_2)=0</math> to have two solutions, it must be the case that <math>r_1-r_2=- 2\sqrt{-r_1}</math> *. It follows that the sum of the roots of <math>\tilde{p}(x)</math> is <math>2r_1 + 2\sqrt{-r_1}</math>, whose maximum value occurs when <math>r_1 = - \frac{1}{4}</math>. Solving for <math>r_2</math> yields <math>r_2 = \frac{3}{4}</math>. Therefore, <math>\tilde{p}(x)=x^2 - \frac{1}{2} x - \frac{3}{16}</math>, so <math>\tilde{p}(1)= \boxed{\textbf{(A) } \frac{5}{16}}</math>. | Let <math>r_1</math> and <math>r_2</math> be the roots of <math>\tilde{p}(x)</math>. Then, <math>\tilde{p}(x)=(x-r_1)(x-r_2)=x^2-(r_1+r_2)x+r_1r_2</math>. The solutions to <math>\tilde{p}(\tilde{p}(x))=0</math> is the union of the solutions to <math>x^2-(r_1+r_2)x+(r_1r_2-r_1)=0</math> and <math>x^2-(r_1+r_2)x+(r_1r_2-r_2)=0</math>. It follows that one of these two quadratics has one solution (a double root) and the other has two. WLOG, assume that the quadratic with one root is <math>x^2-(r_1+r_2)x+(r_1r_2-r_1)=0</math>. Then, the discriminant is <math>0</math>, so <math>(r_1+r_2)^2 = 4r_1r_2 - 4r_1</math>. Thus, <math>r_1-r_2=\pm 2\sqrt{-r_1}</math>, but for <math>x^2-(r_1+r_2)x+(r_1r_2-r_2)=0</math> to have two solutions, it must be the case that <math>r_1-r_2=- 2\sqrt{-r_1}</math> *. It follows that the sum of the roots of <math>\tilde{p}(x)</math> is <math>2r_1 + 2\sqrt{-r_1}</math>, whose maximum value occurs when <math>r_1 = - \frac{1}{4}</math>. Solving for <math>r_2</math> yields <math>r_2 = \frac{3}{4}</math>. Therefore, <math>\tilde{p}(x)=x^2 - \frac{1}{2} x - \frac{3}{16}</math>, so <math>\tilde{p}(1)= \boxed{\textbf{(A) } \frac{5}{16}}</math>. | ||
Line 11: | Line 11: | ||
~ Leo.Euler | ~ Leo.Euler | ||
− | ==Solution 2 (Factored | + | ==Solution 2 (Factored Form)== |
The disrespectful function <math>p(x)</math> has leading coefficient 1, so it can be written in factored form as <math>(x-r)(x-s)</math>. Now the problem states that all <math>p(x)</math> must satisfy <math>p(p(x)) = 0</math>. Plugging our form in, we get: <cmath> ((x-r)(x-s)-r)((x-r)(x-s)-s) = 0 </cmath> | The disrespectful function <math>p(x)</math> has leading coefficient 1, so it can be written in factored form as <math>(x-r)(x-s)</math>. Now the problem states that all <math>p(x)</math> must satisfy <math>p(p(x)) = 0</math>. Plugging our form in, we get: <cmath> ((x-r)(x-s)-r)((x-r)(x-s)-s) = 0 </cmath> | ||
Line 18: | Line 18: | ||
From here two solutions can progress. | From here two solutions can progress. | ||
− | ==Solution 2.1 (Fastest)== | + | ===Solution 2.1 (Fastest)=== |
We can rewrite <math>r^2-2rs+s^2+4r = 0</math> as <math>(r-s)^2+4r = 0</math>. Let's keep our eyes on the ball; we want to find the disrespectful quadratic that maximizes the sum of the roots, which is <math>r+s</math>. Let this be equal to a new variable, <math>m</math>, so that our problem is reduced to maximizing this variable. | We can rewrite <math>r^2-2rs+s^2+4r = 0</math> as <math>(r-s)^2+4r = 0</math>. Let's keep our eyes on the ball; we want to find the disrespectful quadratic that maximizes the sum of the roots, which is <math>r+s</math>. Let this be equal to a new variable, <math>m</math>, so that our problem is reduced to maximizing this variable. | ||
Line 34: | Line 34: | ||
<math>m = -2q(q-1) \implies m = \frac{1}{2}. m-r = s \implies \boxed{s = \frac{3}{4}}</math>. | <math>m = -2q(q-1) \implies m = \frac{1}{2}. m-r = s \implies \boxed{s = \frac{3}{4}}</math>. | ||
− | ==Solution 2.2 (Derivation-Rotated Conics)== | + | ===Solution 2.2 (Derivation-Rotated Conics)=== |
We see that the equation <math>r^2-2rs+s^2+4r = 0</math> is in the form of the general equation of a rotated conic - <math>Ax^2+Bxy+Cy^2+Dx+Ey+F = 0</math>. Because <math>B^2 -4AC = (-2)^2 - 4(1)(1) = 0</math>, this rotated conic is a parabola. | We see that the equation <math>r^2-2rs+s^2+4r = 0</math> is in the form of the general equation of a rotated conic - <math>Ax^2+Bxy+Cy^2+Dx+Ey+F = 0</math>. Because <math>B^2 -4AC = (-2)^2 - 4(1)(1) = 0</math>, this rotated conic is a parabola. | ||
Line 56: | Line 56: | ||
~KingRavi | ~KingRavi | ||
+ | |||
+ | == Solution 3 (Vertex Form) == | ||
+ | |||
+ | ~MRENTHUSIASM |
Revision as of 22:30, 22 November 2021
Contents
Problem
A quadratic polynomial with real coefficients and leading coefficient is called if the equation is satisfied by exactly three real numbers. Among all the disrespectful quadratic polynomials, there is a unique such polynomial for which the sum of the roots is maximized. What is ?
Solution 1 (Factored Form)
Let and be the roots of . Then, . The solutions to is the union of the solutions to and . It follows that one of these two quadratics has one solution (a double root) and the other has two. WLOG, assume that the quadratic with one root is . Then, the discriminant is , so . Thus, , but for to have two solutions, it must be the case that *. It follows that the sum of the roots of is , whose maximum value occurs when . Solving for yields . Therefore, , so .
For to have two solutions, the discriminant must be positive. From here, we get that , so . Hence, is negative, so .
~ Leo.Euler
Solution 2 (Factored Form)
The disrespectful function has leading coefficient 1, so it can be written in factored form as . Now the problem states that all must satisfy . Plugging our form in, we get: The roots of this equation are . By the fundamental theorem of algebra, each root must have two roots for a total of four possible values of x yet the problem states that this equation is satisfied by three values of x. Therefore one equation must give a double root. Without loss of generality, let the equation be the equation that produces the double root. Expanding gives . We know that if there is a double root to this equation, the discriminant must be equal to zero, so .
From here two solutions can progress.
Solution 2.1 (Fastest)
We can rewrite as . Let's keep our eyes on the ball; we want to find the disrespectful quadratic that maximizes the sum of the roots, which is . Let this be equal to a new variable, , so that our problem is reduced to maximizing this variable. We can rewrite our equation in terms of m as .
This is a quadratic in m, so we can use the quadratic formula:
It'll be easier to think without the square root, so let : then we can rewrite the equation as . We want to maximize m, so we take the plus value of the right-hand-side of the equation. Then;
To maximize m, we find the vertex of the right-hand side of the equation. The vertex of is the average of the roots of the equation which is . This means that since , . .
Solution 2.2 (Derivation-Rotated Conics)
We see that the equation is in the form of the general equation of a rotated conic - . Because , this rotated conic is a parabola.
The definition of a parabola is the locus of all points that are equidistant from a point (focus) and line (directrix). Let the focus and directrix of this particular parabola be and . Then we can try to find the general form of a rotated parabola in terms of and.
The distance between two points and is . Therefore this is the distance from any point on the parabola to the focus.
The distance from a point to a line is .
We can set these two equal to each other and we get:
Squaring both sides of the equation, we get .
Expanding both sides of the equation gives
Multiplying both sides of the equation by and rearranging gives
Solution in progress
~KingRavi
Solution 3 (Vertex Form)
~MRENTHUSIASM