Difference between revisions of "2021 Fall AMC 10A Problems/Problem 25"
(→Solution 1) |
(→Solution 2.1 (Fastest)) |
||
Line 21: | Line 21: | ||
We can rewrite <math>r^2-2rs+s^2+4r = 0</math> as <math>(r-s)^2+4r = 0</math>. Let's keep our eyes on the ball; we want to find the disrespectful quadratic that maximizes the sum of the roots, which is <math>r+s</math>. Let this be equal to a new variable, <math>m</math>, so that our problem is reduced to maximizing this variable. | We can rewrite <math>r^2-2rs+s^2+4r = 0</math> as <math>(r-s)^2+4r = 0</math>. Let's keep our eyes on the ball; we want to find the disrespectful quadratic that maximizes the sum of the roots, which is <math>r+s</math>. Let this be equal to a new variable, <math>m</math>, so that our problem is reduced to maximizing this variable. | ||
− | We can rewrite our equation in terms of m as <math>(m | + | We can rewrite our equation in terms of m as <math>(2r-m)^2 + 4r = 0 \implies m- 4rm + 4r^2+4r = 0 </math>. |
This is a quadratic in m, so we can use the quadratic formula: | This is a quadratic in m, so we can use the quadratic formula: | ||
− | <math>m = \frac{ | + | <math>m = \frac{4r \pm \sqrt{16r^2-4(4r^2+4r)}}{2} = 2r \pm \sqrt{-4r} = 2(r \pm \sqrt{-r})</math> |
+ | |||
+ | ==Solution 2.2 (Derivation-Rotated Conics)== | ||
+ | |||
+ | We see that the equation <math>r^2-2rs+s^2+4r = 0</math> is in the form of the general equation of a rotated conic - <math>Ax^2+Bxy+Cy^2+Dx+Ey+F = 0</math>. Because $B^2 | ||
Revision as of 21:12, 22 November 2021
Contents
Problem
A quadratic polynomial with real coefficients and leading coefficient is called if the equation is satisfied by exactly three real numbers. Among all the disrespectful quadratic polynomials, there is a unique such polynomial for which the sum of the roots is maximized. What is ?
Solution 1
Let and be the roots of . Then, . The solutions to is the union of the solutions to and . It follows that one of these two quadratics has one solution (a double root) and the other has two. WLOG, assume that the quadratic with one root is . Then, the discriminant is , so . Thus, , but for to have two solutions, it must be the case that *. It follows that the sum of the roots of is , whose maximum value occurs when . Solving for yields . Therefore, , so .
For to have two solutions, the discriminant must be positive. From here, we get that , so . Hence, is negative, so .
~ Leo.Euler
Solution 2 (Factored form)
The disrespectful function has leading coefficient 1, so it can be written in factored form as . Now the problem states that all must satisfy . Plugging our form in, we get: The roots of this equation are . By the fundamental theorem of algebra, each root must have two roots for a total of four possible values of x yet the problem states that this equation is satisfied by three values of x. Therefore one equation must give a double root. Without loss of generality, let the equation be the equation that produces the double root. Expanding gives . We know that if there is a double root to this equation, the discriminant must be equal to zero, so .
From here two solutions can progress.
Solution 2.1 (Fastest)
We can rewrite as . Let's keep our eyes on the ball; we want to find the disrespectful quadratic that maximizes the sum of the roots, which is . Let this be equal to a new variable, , so that our problem is reduced to maximizing this variable. We can rewrite our equation in terms of m as .
This is a quadratic in m, so we can use the quadratic formula:
Solution 2.2 (Derivation-Rotated Conics)
We see that the equation is in the form of the general equation of a rotated conic - . Because $B^2
Solution in progress
~KingRavi